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Featured Application: In this work, Process Mining techniques are used with a curricular ana-
lytics approach, to model the educational trajectories of engineering students during their first
courses.

Abstract: Curricular analytics is the area of learning analytics that looks for insights and evidence on
the relationship between curricular elements and the degree of achievement of curricular outcomes.
For higher education institutions, curricular analytics can be useful for identifying the strengths and
weaknesses of the curricula and for justifying changes in learning pathways for students. This work
presents the study of curricular trajectories as processes (i.e., sequence of events) using process mining
techniques. Specifically, the Backpack Process Model (BPPM) is defined as a novel model to unveil
student trajectories, not by the courses that they take, but according to the courses that they have
failed and have yet to pass. The usefulness of the proposed model is validated through the analysis
of the curricular trajectories of N = 4466 engineering students considering the first courses in their
program. We found differences between backpack trajectories that resulted in retention or in dropout;
specific courses in the backpack and a larger initial backpack sizes were associated with a higher
proportion of dropout. BPPM can contribute to understanding how students handle failed courses
they must retake, providing information that could contribute to designing and implementing timely
interventions in higher education institutions.

Keywords: learning analytics; curricular analytics; process mining; curricular trajectories; higher
education

1. Introduction

In the last decade, different techniques have progressively emerged for the analysis of
data recorded by information systems, with the purpose of supporting informed decision-
making in Higher Education Institutions (HEIs) [1]. In this context, Learning Analytics (LA)
is the “measurement, collection, analysis and reporting of data about learners and their
contexts, for purposes of understanding and optimizing learning and the environments
in which it occurs” [1]. Many HEIs have high hopes that LA can play an important
role in supporting institutional processes, where data analysis can improve teaching [2],
curricula [3] and learning outcomes [2] and reduce dropouts [2].

Curricular Analytics (CA) emerged as an area of LA that focuses on analyzing curricula
and improving them through continuous improvement processes [4]. For this purpose,
analytical tools are used to collect different types of educational data, e.g., data on curricular
structure and/or data on course grading [5]. This allows the HEIs to analyze the strengths
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and weaknesses of their curricula and to justify the curricular decisions and changes made
when designing learning pathways for students [2].

The main objective of CA is to improve the curricular design to provide teaching
and learning trajectories according to the needs of the students. For this purpose, it seeks
to assess the consistency between course-level outcomes and program-level outcomes,
determining whether learning outcomes have been achieved and eventually detecting
gaps with respect to the assessments [5]. In addition, it is possible to identify blind spots
and bottlenecks of students’ trajectories, thus demonstrating the value of the curriculum
for different stakeholders [6]. Traditionally, curricular analysis has been a painstaking,
laborious, time-consuming, manual process. However, with the emergence of new an-
alytical techniques that take advantage of different data sources (both structured and
unstructured), new possibilities have emerged for analyzing the curriculum and students’
curricular trajectories [7].

There are often significant differences between the curricular trajectories proposed
(ideal trajectories) by academic institutions and the curricular trajectories carried out (actual
trajectories) by students [8,9]. Not everyone is able to follow these curricular trajectories in
the same way, so it is important to detect when these deviations happen and to understand
why they happen. In this way, it is possible to support better decision-making at the
curricular level (e.g., what courses students are expected to take in the same semester,
prerequisite courses and number of available vacancies to be offered in a course, among
other things).

So far, some tools have been developed that integrate different techniques for the
analysis of curricular trajectories (e.g., data mining techniques such as clustering and
classification) [10,11], with the purpose of obtaining a “snapshot of the student” at a specific
moment in time with respect to their progress. Some of these tools are, e.g., academic
advising systems, which allow to see the progress status of a student according to their
curriculum [4,7,12] or early dropout prediction systems in MOOC courses [13]. However,
while these tools are promising, the models implemented to define curricular trajectories
as processes (i.e., an ordered sequence of events that describe a student’s curricular history)
and not just as a snapshot of curricular progress, are scarce. Moreover, several authors
consider that the development of LA requires that the selection of data and analysis models
be more grounded in learning sciences [1], in order for tool design decisions to be based on
them [14]. Therefore, it is believed necessary to develop analysis models that see curricular
trajectories as processes and are based on concepts that come from learning sciences.

To broaden the current understanding of how curricula can be improved based on
evidence from data, this paper presents a model for systematizing the analysis of curricular
trajectories as processes, based on the backpack concept and making use of formal Process
Mining (PM) techniques. This broadens previous studies where these techniques have been
used directly on curricular records [15–17], without conceptual abstractions. The proposed
model is based on preliminary work, presented in [18].

This paper is structured as follows: Section 2 presents the backpack metaphor behind
the approach. Section 3 introduces the related work in PM. Section 4 describes the Backpack
Process Model (BPPM). Section 5 illustrates the BPPM proposal with an application case.
Section 6 discusses the main findings through the application case. Finally, conclusions for
BPPM are presented in Section 7.

2. The Backpack Metaphor

Recent research has highlighted the important role that student effort plays in aca-
demic success [19]. High school readiness [20], economic disadvantage [20], classroom
climate [21] and curriculum design [22] had previously been identified as factors that
explain dropout. However, self-efficacy also plays a key role in academic success.

Self-efficacy is defined as a person’s belief in their ability to succeed in a specific
situation [23] and has recently been linked to the effort that students are willing to make [19].
In a qualitative case study, Meyer and Marx [24] found that loss of confidence due to
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poor performance contributed to engineering attrition. Those students who believe that
intelligence is fixed and cannot be developed tend to be less tolerant of failure [19]. On the
contrary, those who believe that it can be developed, when faced with an adverse situation,
try harder, develop active learning strategies and, even when their curricular progress is
not optimal, persist [19].

Based on those previous works about the relevance of self-efficacy, this paper defines
the backpack metaphor. A metaphor is “a mechanism of analogy in which we conceive
a concept that belongs to a certain conceptual domain in terms of another conceptual
domain, and in which correspondences between the attributes of both domains are estab-
lished” [25]. Metaphors are commonly used to communicate ideas in technical disciplines,
facilitating interdisciplinary work. The backpack metaphor is defined as follows: The list of
failed courses that a student must retake can be represented as stones that the student puts
in a backpack. Each time a student fails a course, a new stone is placed in their backpack,
which remains there until the course is passed. Carrying many stones in the backpack could
awaken in the student the need to empty it as soon as possible, making risky decisions from
the curricular point of view [26]. On the other hand, never being able to empty the backpack
(even if the failed courses changed), could affect self-efficacy, have serious consequences in
the medium term, affect the students’ goals or even result in program dropout.

Traditionally, the analysis of curricular trajectories has been based on the progress of
each student in the curriculum [8,27]. Even though this strategy has the advantage that the
model is obtained directly from the data and is easy to understand, it does not represent
the psychological burden students perceive when they have failed courses that later on
they must retake. Understanding how students manage their course backpack could help
to better understand their decisions regarding course enrollment, persistence and dropout.

3. Related Work in Process Mining

Process Mining (PM) is a relatively new research discipline that acts as a bridge
between data science and process science [28]. It aims to extract knowledge from the
event logs obtained from information systems, in order to discover process models, verify
conformance, analyze bottlenecks, compare variants of the same process and suggest
improvements [28]. This discipline has been applied in multiple domains, with partic-
ular success achieved in fields in which processes are insufficiently structured, such as
healthcare [29] and education [16].

Different techniques have been used to analyze the diverse perspectives of the pro-
cesses, such as control flow, performance and organizational [30]. For the control flow,
which is the focus of this work, petri nets [30,31], causal nets [31] and process trees [32],
among other methods, have been used to represent process models and algorithms have
been proposed that can generate them (e.g., alpha for petri nets [28] and Inductive Miner
for process trees [28]). Directly Follows Graphs (DFGs) that can be obtained by DFG-based
algorithms such as heuristic miner [28] are also widely used because they are one of the
easiest notations to interpret by non-expert users of process mining [31]. While DFGs
show disadvantages over the other mentioned formalisms because they do not manage
concurrency properly (i.e., when several events occur simultaneously), they are especially
recommended when concurrency representation is not necessary.

To guide the application of PM and analyze the results [33], different methodologies
have been developed. Well-known generic methodologies are the L* life cycle [28] and
PM2 [33]. Both methodologies have a broad scope, covering the entire process management
cycle [34]. Different authors have proposed domain-specific methodologies that take into
account the particularities of each domain. For education, Maldonado-Mahauad et al. [35]
adapted PM2, narrowing its scope from data extraction to model analysis. Johnson et al. [36]
extended PM2 to include domain-specific requirements in healthcare, in terms of ethics
and participation of domain experts, among other things. Martin et al. [29] established that
a process mining methodology in healthcare should highlight usability, in the building of
domain-specific event logs and in the management of unstructured data. In manufacturing,
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Lorenz et al. [37] proposed a methodology with a scope that included the improvement of
the processes.

In recent years, research has been conducted to visualize event logs through domain
models or even theoretical frameworks that can be used to represent and analyze the
data [38]. The inclusion of shift work operation to model the organizational perspective
of processes [30], the construction of a model representing the added value in service
processes [39], the modeling of user behavior in MOOCs to identify self-regulated learning
strategies [35] and the analysis of dropout behavior through the investment model [40],
are examples of that. In this work, we propose to use the backpack metaphor to conceptu-
alize students’ curricular trajectories as a novel approach to understand how they manage
their failed courses.

While any general-domain process mining methodology could have been used for this
work, the one proposed by Maldonado-Mahauad [35] was chosen because it is based in
PM2, which is widely used, and its scope goes only from data extraction to model analysis.
The main contribution of this work is not the sequence of stages in the methodology, but the
approach used to understand the curricular trajectories through the backpack metaphor.

4. The Backpack Process Model (BPPM) Approach

This section proposes the Backpack Process Model (BPPM) approach, in order to sys-
tematize the analysis of curricular trajectories using PM techniques, based on the backpack
metaphor. This model represents the curricular trajectories of the students as a sequence of
failed courses that they must retake; that is to say, as a sequence of backpacks. This sequence
of backpacks is represented as a Directly Follows Graph (DFG), one of the most popular
and widespread process modeling notations [31]. A DFG is a graph with nodes and transi-
tions (directed edges) that corresponds to directly follows relationships (see Figure 1) [31].
In the BPPM, each node represents the group of failed courses that the student must
retake and each edge represents the transition between a given backpack and the next
one. Table 1 shows the backpack trajectories for two students, namely 23 and 24. In this
example, student 23 failed algebra (A) and chemistry (Q) in the first semester, beginning
the following semester with both courses in his/her backpack. This situation is labeled
“AQ” in Table 1. The second semester, this student passed chemistry (Q) but failed algebra
(A) again, keeping it in his/her backpack. Finally, this student passed algebra (A) and
continued studying with an empty backpack. This situation is tagged with “RETENTION”
in the event log. On the contrary, student 24 failed chemistry (Q), maintained it in the
backpack for one semester and the next semester dropped out. This situation is tagged with
“DROPOUT” in the event log. Figure 1a represents the DFG for the backpack trajectories
illustrated in Table 1.

Table 1. Example of event log for BPPM.

Student ID Backpack Starting Date Ending Date

23 AQ 1 July 2013 1 December 2013
23 A 1 December 2013 1 February 2014
23 RETENTION 1 February 2014 1 February 2014
24 Q 1 July 2013 1 December 2013
24 DROPOUT 1 December 2013 1 December 2013

Additionally, our analysis considers a derivation of this model, called BPPM-S (BPPM,
grouped by size), where curricular trajectories are represented as a sequence of backpack
sizes for each academic period. Figure 1b represents the DFG for the backpack trajectories
included in Table 1, according to the BPPM-S. In Figure 1b, BP-1 and BP-2 represent the
backpack size at the end of a semester; that is, the number of courses students failed and
have not yet passed. BP-1 indicates a backpack size of 1, while BP-2 indicates a backpack
size of 2. More details on the meaning of nodes and transitions shown in Figure 1 are
explained later, in the event log generation subsection.
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Figure 1. Example of educational trajectories, according to the BPPM and BPPM-S models. (a) Shows
an example of BPPM. (b) Shows an example of BPPM-S. The darker color of the nodes represents
a higher percentage of students who went through each state. The thickness of the arrows represents
the percentage of students who had transitions between both states. All values are percentages in
relation to the total number of students included in each model.

In order to develop the previously proposed analysis models from the curricular
records of a HEI, it is necessary to apply a PM methodology. An appropriate methodology,
such as the one presented below, allows to apply PM techniques and to understand the
results [33]. This methodology, as can be seen in Figure 2, defines the following four stages:
Data extraction, event log generation, discovery and analysis.
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Figure 2. Stages for the generation of the process model, based on an adapted version of PM2

methodology [35].

4.1. Data Extraction

In the first stage of the methodology, the minimum necessary data are extracted and
used for an exploratory analysis. Since the final objective is the curricular analysis, the
BPPM and BPPM-S models define a table, called BPPMt, that contains a record of each
course taken by each student, as well as their final grade (see Table 2).

Table 2. Example of table BPPMt.

Student ID (s) Period (p) Course (c) Grade (g) Ending Date (d)

23 2013-1 Algebra (A) 2.0 1 July 2013
23 2013-1 Chemistry (Q) 3.5 1 July 2013
23 2013-1 Calculus (C) 4.5 1 July 2013
23 2013-1 Innovation (D) 5.5 1 July 2013
23 2013-2 Algebra (A) 3.4 1 December 2013
23 2013-2 Chemistry (Q) 5.0 1 December 2013
23 2013-3 Algebra (A) 6.5 1 February 2014
24 2013-1 Algebra (A) 5.5 1 July 2013
24 2013-1 Chemistry (Q) 3.5 1 July 2013
24 2013-1 Calculus (C) 4.5 1 July 2013
24 2013-1 Innovation (D) 6.0 1 July 2013
24 2013-2 Chemistry (Q) 3.8 1 December 2013
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In Table 2, each row of the BPPMt table is represented by the tuple (s, p, c, g, d), where:

- s indicates the ID of the student who took the course
- p the academic period when the course was taken
- c the identifier of the course taken
- g the final grade obtained
- d the end date of the academic period.

For example, (23, 2013-3, Algebra, 6.5, 1 February 2014) indicates that the student with
ID 23 took the algebra course in the period 2013-3, which concluded on 1 February 2014,
obtaining a grade of 6.5 out of 7. The data necessary for the creation of the BPPMt table are
available in the ERP systems commonly used by HEIs. It must be noted that, although the
BPPMt table specifies the minimum fields as a common standardization for the next stage
of the methodology, the table can be extended with additional data, such as the student’s
weighted GPA or current academic status.

4.2. Event Log Generation

In this stage, it is required to model the data in the form of an event log [28] (i.e., a record
of the events that have happened in a process). Formally, an event log is defined as a set
of cases (executions of the process), where each case is an ordered sequence of events
(the actions occurred in that execution) [28]. Therefore, in order to define an event log, it is
necessary to define (1) how to identify a case and (2) how to specify a sequence of events.

A classic first event log option for curricular data consists of defining each case as
a student and each event as a course taken by that student, in the order in which he/she
has taken it. For example, <A, Q, C, D, A, Q, A> would define the trajectory of the student
with s = 23, according to Table 2.

However, as mentioned above, our BPPM model proposes a different perspective on
curricular data, where each event in a student’s trajectory is the backpack he or she has
at the end of each academic term. Formally, (1) each student identifier in the BPPMt table
identifies a different case <b1, b2, . . . bn>; and (2) a bi event is defined as the record of
the group of failed courses that the student must retake at the end of academic period i.
For example, for the student identified with s = 23 in Table 2, <AQ, Q, -> represents their
backpack trajectory and graphically it can be seen in Figure 3. In his/her first academic
period (for example, semester), this student had failed algebra (A) and chemistry (Q) and
therefore must retake them. In their second period the student must still retake chemistry
(either because the student took it and failed it again or because the student decided
not to take the course in the second period) and finally, after the third academic period,
the student does not have courses that should be retaken.
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an example in Table 2, according to the BPPM model.

For simplicity, the above makes an abuse of notation, where the set {A, Q} is repre-
sented by the label AQ and the empty set is presented by the label -. Similarly, an ordering
between course identifiers is assumed, such that two equal sets are represented by the
same label {A, Q} = {Q, A} = AQ.

This definition of event log allows us to analyze the trajectories in the backpack.
However, a student who stays two academic periods with the same backpack will be
represented with two consecutive equal events, where the first event ends in the first
period and the second in the second period. To analyze how much time the student
maintains the same backpack, it needs to be represented as a single event, which begins at
the end of the academic period in which this backpack appears and ends in the period in
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which the backpack changes. The BPPM model proposes the post-processing of the event
log defined above, to merge consecutive events that represent the same backpack. That is,
given a case < . . . ; bi; bi+1; . . . ; bi+n; . . . > where bi = bi+1 = . . . = bi+n, will result in a case
< . . . bi:i+n . . . >, where backpack bi:i+n ranges from period i to period i + n.

To easily distinguish between cases that ended in dropout or retention, for the back-
pack trajectories that ended with the empty backpack, in the BPPM model, the “-” label
was replaced by the label “RETENTION” and in the other cases, a “DROPOUT” event was
added at the end of the case. In the example used in the previous paragraph, <AQ, A, ->,
was replaced by <AQ, A, RETENTION> in the BPPM event log.

Finally, to obtain the event log for the BPPM-S model, each bi:i+n event was labeled
with BP-j, where j represents the size of the backpack. For example, the case represented
by <AQ, Q, RETENTION>, was replaced by <BP-2, BP-1, RETENTION> in the BPPM-S
event log.

4.3. Discovery

In this stage, the event log generated is processed using process mining algorithms.
Specifically, process discovery algorithms are used to automatically generate a model of
the curricular trajectories.

In this work, the BPPM and BPPM-S models propose the use of the Directly Follows
Graphs (DFG), that are built using the DFG algorithm [31]. There is a wide range of tech-
nologies that implement the DFG algorithm. Both academic (e.g., PM4Py [41], bupaR [42],
ProM [28]) and commercial (e.g., Disco [43], Celonis [44]) alternatives are available. In this
case, the model discovery stage was performed using bupaR, an integrated collection of R
packages that creates a framework for the reproducible analysis of processes in R [42].

The DFG notation was chosen because it is one of the easiest to interpret by non-expert
users in process mining [31]. Moreover, the DFG notation is especially recommended when
the concurrency representation is not necessary (i.e., several events occurring simultane-
ously), as in our case (i.e., each event corresponds to a different, disjointed period).

4.4. Analysis

In this final stage, the model analysis was also performed with bupaR [42], considering
different perspectives, which are described in more detail in Table 3, including the selection
of node types, the selection of transition types and applied filters.

Table 3. Filters and properties applied to the event logs to perform each analysis.

Model Perspective Node Type Transition Type Filters Figure

BPPM

(P1) Final event
(DROPOUT or
RETENTION)

Number of
students

Number of
students

Final state: RETENTION; DROPOUT
Does not include initial state RETENTION

More frequent variants: 80%
Figure 4

average time Number of
students

Final state: RETENTION; DROPOUT
Does not include initial state RETENTION

More frequent variants: 80%
Figure 5

(P2) Most
frequent

backpacks

Number of
students;

% students

Number of
students

Does include state A; ACQ; Q
Final state: RETENTION; DROPOUT Figure 6

Number of
students

Number of
students;

% students

Does include state A
More frequent variants: 90% Figure 7a

Number of
students;

average time

Number of
students;

% students

Does include state ACQ
More frequent variants: 90% Figure 7b

Number of
students;

average time

Number of
students;

% students

Does include state Q
More frequent variants: 90% Figure 7c



Appl. Sci. 2021, 11, 4265 8 of 18

Table 3. Cont.

Model Perspective Node Type Transition Type Filters Figure

BPPM-S
(P3) Size of the

backpack

Number of
students;

average time

Number of
students;

% students

Final state: RETENTIONDoes not include
initial state RETENTION Figure 8a

Number of
students;

average time

Number of
students;

% students
Final state: DROPOUT Figure 8b

Number of
students;

% students

Number of
students

Initial state: BP-1; BP-2; BP-3; BP-4Final state:
RETENTION; DROPOUT Figure 9

Number of
students;

average time

Number of
students;

% students

Initial state: BP-1
Final state: DROPOUT Figure 10a

Number of
students;

average time

Number of
students;

% students

Initial state: BP-2
Final state: DROPOUT Figure 10b

Number of
students;

average time

Number of
students;

% students

Initial state: BP-3
Final state: DROPOUT Figure 10c

Number of
students;

average time

Number of
students;

% students

Initial state: BP-4
Final state: DROPOUT Figure 10dAppl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20 
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emptied it (1383 cases, seven more frequent variants). The DROPOUT columns consider only stu-
dents who had a backpack, were not able to empty it and finally dropped out (199 cases, 13 more 
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consider only students who had a backpack, were not able to empty it and finally dropped out. 

Figure 4. Percentage of educational trajectories, according to the BPPM model, that started with
each backpack. The graph considers only the most frequent variants for each model, corresponding
to 80% of the students. The RETENTION column considers only students who had a backpack
and emptied it (1383 cases, seven more frequent variants). The DROPOUT columns consider only
students who had a backpack, were not able to empty it and finally dropped out (199 cases, 13 more
frequent variants).
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Figure 6. Proportion of educational trajectories, according to the BPPM model, that includes each
one of the three most frequent backpacks (Q, ACQ and A) and end either in RETENTION or in
DROPOUT.

For the BPPM model, a comparison between the backpack trajectories that ended in
DROPOUT or RETENTION was performed, as well as the backpack trajectories that include
the three most frequent backpacks were analyzed. For the BPPM-S model, the trajectories
in relation to the backpack size that ended in DROPOUT and RETENTION were compared,
as well as the backpack trajectories that start with different sizes of backpack.
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Figure 7. Educational trajectories, according to the BPPM model, which includes the three most
frequent backpacks, showing only the most frequent variants, which correspond to 90% of the
students in each case. (a) Shows backpack trajectories that include the A backpack. (b) Shows
backpack trajectories that include the ACQ backpack. (c) Shows backpack trajectories that include
the Q backpack. The darker color of the nodes represents a higher percentage of students who
went through a state. The thickness of the arrows represents the percentage of students who had
transitions between both states. All values are percentages in relation to the total number of students
included in each model.
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Figure 8. Educational trajectories, according to the BPPM-S model. (a) Shows only students who had
a backpack and emptied it. (b) Shows only students who had a backpack, were not able to empty it
and finally dropped out. The darker color of the nodes represents a higher percentage of students
who went through a state. The thickness of the arrows represents the percentage of students who
had transitions between both states. All values are percentages in relation to the total number of
students included in each model.
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in RETENTION or in DROPOUT, grouped according to the initial backpack size.
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Figure 10. Educational trajectories that ended in DROPOUT, according to the BPPM-S model.
(a) Shows only students who started with only one course in the backpack. (b) Shows only students
who started with two courses in the backpack. (c) Shows only students who started with three
courses in the backpack. (d) Shows only students who started with four courses in the backpack.
The darker color of the nodes represents a higher percentage of students who went through a state.
The thickness of the arrows represents the percentage of students who had transitions between both
states. All values are percentages in relation to the total number of students included in each model.

5. Application Case: First Engineering Courses

This section illustrates the usefulness of the BPPM and BPPM-S models through
a real application case that analyzes the backpack trajectories for N = 4466 engineering
students from a Latin American university. Specifically, the trajectories they followed to
take the first four courses of the curriculum were analyzed. The courses are calculus (C),
algebra (A), chemistry (Q) and innovation (D). All four courses are automatically enrolled
at the beginning of the first semester. The N = 4466 correspond to the students of the 2013 to
2019 cohorts, who passed the four courses or dropped out after having failed any of these
courses. Specifically, the following three perspectives are analyzed: (P1) BPPM trajectories,
ending either in retention (at the undergraduate program) or in dropout; (P2) most frequent
backpacks; and (P3) the size of the backpack.

(P1) BPPM trajectories ending either in retention or in dropout

The BPPM model allows us to compare the backpack trajectories between dropout
students and those who remained. In particular, the differences can be seen in the distribu-
tion of the variants, the relative frequency of each backpack, the elapsed time in the entire
trajectory and the average time students spend with each backpack.

Table 4 shows three groups of trajectories. The first of these corresponds to those that
include only the empty backpack (No BP). This is the most frequent variant (2504 cases)
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and also the shortest (a single event). The second group corresponds to those students who,
having failed one or more courses, manage to empty the backpack and remain in the study
program. The third group corresponds to those students who, having failed one or more
courses, drop out of the study program without having managed to empty the backpack.

Table 4 also shows that, for the trajectories that include backpacks, both those that
drop out and those who remain show a high variability (51 and 40 variants, respectively).
In the same way, the number of backpack events is similar between students who remain
and those who drop out. However, the average time that students who drop out stay with
a non-empty backpack is significantly lower (p < 0.01).

Table 4. Statistics for BPPM trajectories.

Statistics No BP BP & Retention BP & Dropout

Number of cases 2504 1723 239
Number of variants 1 51 40

Average number of BP events 0 1.27 1.37
Std. dev number of BP events 0 0.52 0.62

Mean time BP (days) 0 237.74 131.80
Std. dev time BP (days) 0 183.71 178.48

Figure 4 shows that the first backpack of students who remain in their undergraduate
programs are more evenly distributed, compared to the first backpack of students who
dropped out, where close to half (50.25% of cases) began with backpack ACQ. An insti-
tution seeking to reduce the early dropout risk could use this information, for example,
to implement support mechanisms for students who have failed certain courses simultane-
ously or change the design of its curricula to prevent certain combinations of failed courses
from occurring at high frequencies.

When the average time that the students stay with each backpack is compared, it is
possible to see that the average time that the dropout students stay with each backpack
is less than the average time for students who remain. Figure 5 shows that the average
time that students who ended in RETENTION stay with each backpack, varies from 166.35
to 275.1 days. In contrast, Figure 5 also shows that the average time that students who
ended in DROPOUT stay with each backpack, varies from 0 to 129.6 days. In particular,
those backpacks with an average duration of much less than one semester (A, AC, ACDQ,
ADQ, CQ, Q), show that a significant proportion of students who fall into this situation
dropout without even retaking such courses or attempting to pass them.

(P2) most frequent backpacks.

The BPPM model also allows us to compare the backpack trajectories that include
specific backpacks. For the three most frequent backpacks: Q (464 cases), ACQ (458 cases)
and A (456 cases), Figure 6 shows the proportion of educational trajectories, according
to the BPPM model, that ended either in RETENTION or in DROPOUT. While there are
differences in the proportion of students who dropped out for each backpack, in all cases
the majority of students remained. Following, a more fine-grained analysis is presented,
to illustrate the differences in the educational trajectories that include each backpack.

Figure 7 shows the 90% most frequent variants of the students who had backpack A,
ACQ and Q. Figure 7a shows that the vast majority (94.56%) of the students had backpack
A as the first and the only backpack in their trajectories.

Figure 7b shows that the backpack ACQ was the first backpack for all of these students.
Most of those who dropped out (62 over 88) had direct transitions from ACQ to DROPOUT.
In contrast, the majority of students who remained emptied their backpack after several
stages. The institution could then encourage those students who have the ACQ backpack
not to take such failed courses simultaneously by suggesting a certain sequence. In this
case, the vast majority of students who defer the Q course remain.
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Figure 7c shows that most students did not have the backpack Q as the first backpack,
but they had it after passing one or more courses they had previously failed. This behavior
could show a sort of prioritization of students who have multiple courses in their backpacks,
postponing taking course Q. Furthermore, only a small minority of the students who had
this backpack, ended in DROPOUT. This reinforces the idea that students who remain,
and have failed a course, have given higher priority to courses other than Q. The institution
should then analyze the possibility of postponing this course in the study plan.

(P3) size of the backpack.

The BPPM-S model allows us to compare the educational trajectories across different
backpack sizes. This study illustrates the comparison between backpack trajectories for
students who dropout and students who remain, as well as the comparison between those
that start with different backpack sizes.

Figure 8a shows that backpack trajectories for students who manage to empty it.
They mostly start with a backpack size of 1 or 2 and most students who start with a larger
backpack, reduce its size before emptying it, going through BP-1. In addition, the average
time that students spend with a given backpack size is longer than one semester (150 days,
approximately).

Figure 8b shows that most backpack trajectories for dropout students start with
a larger backpack size. Moreover, for backpack sizes larger than 1, there are mainly direct
transitions from the nodes to dropout.

Figure 9 shows the proportion of students who dropped out or remained, grouping
them according to the initial backpack size. Most students whose initial backpack size is less
than 4 (BP-1, BP-2 and BP-3), emptied their backpack and remained in their undergraduate
programs. 96.57% of students who started in BP-1, 92.63% of students who started in BP-2
and 74.69% of students who started in BP-3, ended in RETENTION. In contrast, only 35.21%
of students who started in BP-4, ended in RETENTION.

Figure 10 shows that, in all cases, the majority of students who dropped out, have di-
rect transitions from the initial backpack to dropout. The above shows the importance of
defining support strategies for students who simultaneously fail several courses, as well as
the need to review the curriculum, evaluating the placement of several high-failure rate
courses in the same semester.

6. Discussion

In this paper, the Backpack Process Model (BPPM) was presented, a model that
allows systematizing the analysis of curricular trajectories using the backpack metaphor
through PM techniques. Its purpose is to represent the psychological burden that students
perceive while they have failed courses that they must retake. This model offers a new
alternative to analyze curricular trajectories and contribute to understanding why a student
remains or drops out from their undergraduate program. This model will help to carry
out timely interventions that allow the retention of students at risk of dropping out.
We believe that this approach is relevant for an international audience given that global
participation in higher education has grown in many countries [45], with HEIs receiving
more heterogeneous students, in terms of prior preparation, socioeconomic background
and beliefs about learning. Actually, students show more complex enrollment patterns [46]
and more variability in their academic results [8]. In these contexts, curricular analytics
models that are based on recent research and go beyond the analysis of curricular records
can be useful.

We highlight the main findings in the application case:
First, BPPM shows differences between the backpack trajectories that ended in reten-

tion or in dropout. Almost half of the students who ended up dropping out start with
the ACQ backpack and most of them did not empty their backpacks before dropping out.
On the other hand, most of the students who partially emptied their backpacks in more
than one stage, even in several semesters, remained. According with Stump, Husman
& Corby [47], this difference in their behaviors could be explained by their beliefs about
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the nature of intelligence and whether it can be developed or not. Students with incre-
mental beliefs about intelligence and self-efficacy may try harder in higher education [19].
Those with less successful initial trajectories but who nevertheless remain and eventually
finish their undergraduate programs are termed struggling persisters [48] and they have
received more attention while the proportion of less prepared student has increased in
higher education [45].

Second, BPPM-S shows differences in the proportion of students who dropped out or
remained, depending on the initial size of the backpack. The larger initial backpack size
was associated with a higher proportion of dropouts and also with a higher proportion
of direct transitions to dropout. In the case of engineering, the competitive culture and
the nature of the first courses as contributors to a process of “natural selection” [49] have
been used before to explain this phenomenon. The HEI in which this application case was
made is highly selective [50] and previous self-efficacy beliefs are expected to influence the
decision to stay, although the initial results are not satisfactory. It could explain that only
students with the largest backpack size ended up dropping out at a higher rate. According
to Snyder et al. [19], positive beliefs about effort were moderately associated with the
success of the first semester in engineering, but the association between their beliefs about
effort and the decision to stay was found to be stronger.

Descriptive statistics on BPPM have shown interesting findings, related with backpack
size and frequency of each backpack type, as well as their relationship with the student
decision on drop out or remain. Nevertheless, the expressive power of BPPM goes further,
providing insights on the dynamic behavior of students when managing their backpacks.
The sequence followed by students who drop out or remain to empty their backpacks,
as well as the time it takes to do so, are good examples. PM tools, combined with domain
models, provide a powerful instrument to obtain a deeper understanding of the dynamic
behavior of students [30,35].

The findings in the application case should not be taken as general conclusions, but as
examples of the expressive power of the BPPM and BPPM-S models.

This application case has two main limitations and the conclusions drawn from
it should take them into account. First, the conclusions derived from the BPPM and
from process mining in general depend largely on the accuracy and completeness of the
information used [51]. The BPPM uses data extracted from the curriculum dimension, so to
obtain a deep understanding of the student’s decisions, it should be used as a complement
to other information sources. Second, the conclusions derived from the application case
study should not be considered as general findings because this study was carried out in
a specific institution and time window and only first-semester courses were considered.

7. Conclusions

From the PM perspective, the contribution of BPPM to CA is twofold: Firstly, it system-
atizes the analysis of curricular trajectories based on the backpack metaphor, characterizing
students with similar behaviors in similar contexts. BPPM can improve the understanding
of how students handle failed courses they must retake in each study program and in which
sequences students stay or drop out most often. Furthermore, the BPPM shows how it is
possible to integrate methodologies for sequence analysis and give them a specific meaning
in study contexts such as higher education. It is a way of complementing other study
metrics to seek an understanding of the educational trajectories that lead to dropout [52].

Secondly, BPPM can help managers and policymakers because the analysis of educa-
tional data can help to design and implement timely interventions. Backpack monitoring
could be implemented in HEIs, to support counseling. While academic performance is
a strong predictor of retention [53], student’s beliefs about the usefulness of effort have
a significant influence on academic performance [19]. Good counseling services use tech-
nology to identify students at risk [6,27] and BPPM could be used as a complement to
identify these students. Additionally, understanding how students handle their backpacks
could be used to redesign the curriculum, to reduce the risk of students getting a very large
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backpack size and to improve student satisfaction with the curriculum. These kinds of
decisions could help to reduce early dropout.

We believe that the BPPM and BPPM-S models could be used to analyze longer curricu-
lar trajectories that include the entire study plan. This analysis could help to understand the
impact of failed courses that students must retake on late dropout and stop out decisions.
The application of trace clustering techniques, in combination with DFGs, could be useful
to reduce the complexity of longer BPPM educational trajectories, decomposing traces into
smaller and more understandable backpack trajectories. In this context, hierarchical cluster-
ing [54] looks promising for future works. Furthermore, qualitative analysis could expand
the understanding of students’ beliefs about effort and the nature of intelligence [19] on
decisions about course taking, stop out and dropout.
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