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Abstract Case Management is a paradigm to support knowledge-intensive
processes. The different approaches developed for modeling these types of pro-
cesses tend to result in scattered information due to the low abstraction level
at which the inherently complex processes are represented. Thus, readability
and understandability are more challenging than in imperative process mod-
els. This paper extends a case modeling language – the fragment-based Case
Management (fCM) language – to a so-called fCM landscape (fCML) with
the goal of modeling a single knowledge-intensive process from a higher ab-
straction level. Following the Design Science Research (DSR) methodology, we
first define requirements for an fCML, and then review how literature – in the
fields of process overviews and case management – could support them. Design
decisions are formalized by specifying a syntax for an fCML and the transfor-
mation rules from a given fCM model. The proposal is empirically evaluated
via a laboratory experiment. Quantitative results imply that interpreting an
fCML requires less effort in terms of time – and is thus more efficient – than
interpreting its equivalent fCM case model. Qualitative results provide indi-
cations on the factors affecting case model interpretation and guidelines for
future work.
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1 Introduction

Case Management (CM) is a paradigm to support the design, execution, moni-
toring, and evaluation of knowledge-intensive processes (KiPs) [32]. Compared
to procedural processes, KiPs are overall less structured. Instead, they are
genuinely knowledge-, information-, and data-centric; and require substantial
flexibility at design- and run-time [9,48]. KiPs are often found in domains
where highly trained workers (i.e. knowledge workers) perform various inter-
connected knowledge-intensive decision-making tasks concerning very diverse
units of work (i.e. cases). The term CM originated in the healthcare domain,
where medical personnel – knowledge workers – deal with patients – cases –
and the end-to-end process is not clear beforehand but is rather tailored on-
the-go for each individual based on aspects such as examination results and
medical team expertise [9].

In CM, a case model represents all possible courses of action for handling
cases in a given KiP. As the CM approaches need to capture the complex be-
havior of KiPs – including processed data, possible operations on them, and
their interrelations – case models tend to include more concepts and are more
scattered than traditional imperative process models. When capturing flexi-
bility, the routing and the control flow might be more difficult to understand
compared to those of an imperative process model [27,53].

Different approaches and tools have been developed for CM, e.g. [20,24,40].
Though they are being used in the industry, e.g. [44], their adoption is still
reduced. We argue that this is probably caused by understandability issues
of the inherently complex case models. As posited by Davis [7], adoption in
practice is correlated with ease of use. To address this design-time challenge,
this work proposes accompanying a given case model with a complementary
model, which we term case model landscape (CML). A case model landscape
aims at representing a single KiP, emphasizing its sequence flow and data
interdependencies. The goal of this article is to define how to create a CML for
a case model in a specific CM approach: the fragment-based Case Management
(fCM) approach [20]. Thus, the resulting CMLs are termed fCM landscapes
(fCMLs). We focus on fCM because it is the most researched production case
management approach with tool support; still, we will discuss how our proposal
might concern other related approaches.

The present work followed the Design Science Research (DSR) methodol-
ogy. This involves three main tasks: investigation, design, and validation [52].
We first identified the requirements for an fCML by extrapolating concepts
found in process overviews, namely process maps [29,30], process landscapes [4,
17], and process architectures [11,16]. Second, based on these requirements, we
extended the modeling language used in fCM – namely the fCM-language –
and defined the rules for generating an fCML from an existing fCM case model.
Finally, we conducted a laboratory experiment to assess the interpretation of
the resulting models by their readers.

The work reported in this paper is based on [15]. In comparison, we now
provide a more structured description of fCMLs that includes formal descrip-
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Table 1 Relevant terminology used throughout the paper.

Term Definition
Case Unit of work in the case management paradigm.
Case management (CM) Paradigm for supporting knowledge-intensive processes.
Case model Blueprint of a KiP in the context of case management.
Case model landscape (CML) High-level view of a case model.
fCM case model Blueprint of a KiP in the context of fCM.
fCM-language Language for fCM case models based on BPMN.
fCM-language extension Extension of the fCM-language proposed in this work,

that allows modeling fCMLs.
fCM landscape (fCML) High-level view of an fCM case model proposed in this

work.
Fragment Cohesive set of tasks and decisions constituting a struc-

tured part of a KiP.
Fragment-based CM (fCM) A CM approach for unstructured processes with pre-

defined segments.
Knowledge-intensive process (KiP) Knowledge-, information-, and data-centric processes

needing design- and run-time flexibility.
Process overview High-level view of a collection of business processes.

tions for the fCM-language extension, and for the rules for building an fCML
from a given fCM case model. Additionally, we offer a more elaborate empirical
evaluation of the languages in a laboratory experiment, including both quan-
titative and qualitative data. This empirical assessment provided significant
support for the preliminary findings reported in [15] stating that reading an
fCML, compared to reading an fCM case model, requires less interpretation
effort and improves interpretation efficiency.

In the remainder of the paper, foundations and related work are discussed
in Sect. 2. Then, requirements for an fCML and our design decisions are pre-
sented in Sect. 3. The extension of the fCM-language for fCMLs is presented
in Sect. 4 and its empirical evaluation is discussed in Sect. 5, followed by con-
clusions in Sect. 6. To ease reading the following, we provide a summary of
some relevant terminology used throughout the paper in Table 1.

2 Foundations and Related Work

In this section, we present some grounding concepts of the paper and related
work. Sect. 2.1 focuses on modeling languages and measuring model under-
standability. Sect. 2.2 discusses case management and alternatives to ease the
case model understanding, and Sect. 2.3 introduces the fCM-language with the
help of a meta-model and a running example. Finally, approaches for process
overviews are presented in Sect. 2.4.

2.1 Modeling Languages and Understandability

A modeling language – language for short – contains the elements with which a
model can be created and also interpreted. Modeling languages are described
in terms of their abstract syntax, concrete syntax, and semantics [22]. The
abstract syntax specifies the constituting concepts of the language and their
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relations, while the semantics specifies the meaning of the language’s concepts.
The way to express a language is called concrete syntax or notation, which
consists of a set of symbols and the rules to assemble them together coherently.
The abstract syntax of a language can be represented using a meta-model. For
example, the BPMN (Business Process Model and Notation) standard [39]
provides meta-models that can be instantiated for building process models.
The semantics of a language can be represented in different ways, e.g. BPMN
uses mainly textual descriptions. However, formal mathematical descriptions
are preferred for avoiding ambiguity. Finally, the notation of a language is
represented by the mapping between the concepts of the language and a set
of graphical symbols. For example, the concept of event found in BPMN is
depicted as a circle. A notation is said to be cognitive effective if it allows
generating models that can be easily, quickly, and accurately understood by
their readers [36].

Overall, models are likely to be affected by the gulf of interpretation, i.e.
the difference between what is understood by the reader of the model and
what the modeler intended to communicate [38]. The extent to which this
situation occurs for a given model is quantified in terms of interpretation
performance, i.e. its effectiveness and efficiency. On one hand, interpretation
effectiveness or simply fidelity accounts for how faithfully the interpretation
of the model represents the original meaning of the model [5], e.g., the number
of correct answers provided by a reader when using the model. On the other
hand, interpretation effort accounts for the resources needed to interpret a
model [5], e.g., the time needed by a reader to provide answers when using
the model. Interpretation efficiency is the quotient between effectiveness and
effort [5].

2.2 Case Management

Case management (CM) contributed to turning away from the strict activity
view that had – so far – prevailed in business process management. A first
approach for CM has been introduced as Case Handling in [1,3], which led
to shifting the focus from activities to data. Similarly, Business Artifacts [37]
with the Guard-Stage-Milestone (GSM) approach [24] focus on the high-level
data – data artifacts – handled during case processing. A data artifact is
defined by an information model and the allowed operations on them are ex-
pressed in a lifecycle model. GSM models consist of several stages reaching
specific goals by the execution of defined operations; a stage can be entered
if specific conditions are fulfilled. The GMS approach was used as the basis
for the CMMN (Case Management Model and Notation) standard [40] which
allows specifying case models showing, for example, optional and non-optional
process fragments and their respective entry/exit conditions. However, some
aspects of data – an essential element of CM – cannot be represented using
CMMN, e.g. dynamic aspects of data such as their lifecycle states.
Despite an existing standard, other related approaches were continued or newly
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developed, most prominently PHILharmonicFlows [26], fragment-based Case
Management (fCM) [20], and declarative modeling approaches, such as [2,
42]. PHILharmonicFlows [26] splits a process into micro processes describ-
ing how a data artifact can be changed and a macro process handling micro
processes relations. To deal with complexity, Steinau et al. [45] propose rela-
tional process structures representing the relationships between processes with
cardinalities. However, aspects, such as the results exchanged by the process
fragments or the enablement relations are not captured, limiting the under-
standing and the analysis of such a model. fCM by Hewelt and Weske [20]
uses a small set of BPMN symbols for defining process fragments which can
be combined at run-time according to data conditions. Additionally, the data
structure and lifecycle states are provided for defining when the execution of
a process fragment is enabled. In [19,21], Hewelt et al. provide a method for
supporting the case model elicitation. Still, it is an open challenge that the
resulting case model is difficult to read for people not involved in the case
model design. Declarative process modeling approaches, such as [2,42], try to
avoid the disadvantages of imperative process models by not specifying the
process behavior a priori in a model. The activities of a declarative model can
be executed in any order and with an arbitrary frequency. Only by adding
rules to a declarative model (e.g. the execution of activity B always has to
be preceded by activity A) the allowed behavior of a business process is con-
strained. However, experiments showed that declarative process models seem
to be more difficult to comprehend [43]. A reason for lower understandabil-
ity is that by different rules targeting the same activity implicit dependencies
between activities can exist, which are not directly given in the declarative
model. This is similar to the fCM model, where also the relations between
the process fragments are also not explicitly shown in the model. De Smed et
al. [8] propose an approach to detect automatically such implicit dependencies
and visualize them in dependency diagrams. These types of diagrams have a
quite low abstraction level which might lead still to understandability issues
in the case of more complex models.

2.3 Fragment-based Case Management Language

As discussed in the introduction, our design decision is to develop a case model
landscape for the fCM approach [20]. The fCM approach understands KiPs as
having structured parts – i.e. process fragments – that are flexibly combined
at run-time based on data handled by the process. This corresponds to the
unstructured processes with pre-defined segments as defined by Di Ciccio et
al. [9]: KiPs whose overall process logic is not explicitly defined, yet they
entail pre-defined structured parts called fragments that need to be selected
and properly composed on a per-case basis. Regarding its language, fCM reuses
concepts from BPMN (Business Process Model and Notation) [39] – the widely
applied industry-standard for imperative process modeling. We call this the
fCM-language.
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Fig. 1 Partial fCM case model for medical consultation: (a) domain model, (b) object
lifecycle model for the Patient File, (c) goal state, and (d) process fragment models.

Each fragment of an fCM case model contains a number of activities and
decisions, including consuming/producing data. Fragments are similar to sub-
processes, with the difference that usually fragments have a condition that
needs to be fulfilled before they can be executed. This is a data condition
consisting of the existence of one or many instances of a given data type in
a given state. Data and their states play a key role in the fCM approach.
Besides being the element that allows combining fragments, a data condition
is also used in fCM to express the termination condition of a KiP. In fCM, a
case model consists of four sub-models: (a) a domain model, (b) a set of object
lifecycles, (c) a goal state, and (d) a set of process fragments.

In the remainder of the paper, we use a running example termed the medical
consultation process to illustrate the discussed concepts. In the example, when
patients arrive at the hospital, they will be treated by a medical team for
providing diagnosis and treatment and also by personnel for administrative
matters, all with the goal of improving their health and discharging them
from the hospital. The fCM case model for our running example is shown in
Fig. 1. We use it in the following to illustrate the sub-models composing an
fCM case model.

Domain model. The domain model represents the static view of the data
that is relevant to the KiP. It is composed of a collection of data classes defining
relevant data types. In the example in Fig. 1a, the relevant data types are
Biopsy, Patient File, X-ray, and Tomography.

Object lifecycle models. Every data class of the domain model behaves
according to a scenario-specific object lifecycle (OLC) or, simply, lifecycle. A
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lifecycle depicts possible states and transitions that an object of a certain data
type may undergo during the handling of a case. Fig. 1b shows the lifecycle
of the Patient file as a finite state machine with the following possible
states: created, furtherDiagnosis, diagnosed, medicationNeeded, surgeryNeeded,
and finished.

Goal state. The goal state defines when an instance of a given case model
can terminate. The goal state corresponds to a set of data conditions (i.e.
availability of a data object of a given class in a given state) related via logical
operators. Fig. 1c shows the goal state for our running example: a Patient

File has to be in the state finished.

Process fragment models. A case model contains multiple process frag-
ments. In the example, the fragments are Admission, Diagnosis, Surgery, Med-
ication, Biopsy, Tomography, and Cardiorespiratory Resuscitation (CPR), as
depicted in Fig. 1d. Each process fragment is composed of a set of data, gate-
way, event, and activity nodes linked by edges, as in BPMN (Business Process
Model and Notation) process models. In the remainder of the paper and as
shown in Fig. 1d, data types and their states are depicted using the BPMN
data-object notation: Data type [state].
If the start event of a fragment is a blank start event, then the fragment is
enabled with case initiation, e.g., the Admission fragment. Else, if the frag-
ment has a message start event, it is enabled as soon as the external event
occurs during case execution. External events can be messages by other cases,
or relevant signals from the case environment, e.g., the patient suffers cardiac
arrest as shown in the CPR fragment in Fig. 1d. Most fragments, however,
are enabled by a data condition, which means that such fragments are only
enabled to start once a given data condition is true. This is represented by a
conditional start event referencing a certain data condition. For example, as
shown in Fig. 1d, the Diagnosis fragment becomes enabled when there is a
data instance of Patient file [created].
Fragment modeling requires consistency in labeling data nodes and data con-
ditions to capture the relations between fragments. The activities within the
different fragments consume/produce data in given states. For example, in
Fig. 1d the Admission fragment writes a Patient file [created]. It is pos-
sible to identify a relation between the Admission and the Diagnosis fragments,
since data produced in the former, enables the execution of the latter.

In fCM, knowledge workers have a central role and can decide which of the
enabled fragments are executed and how often based on the allowed data condi-
tions. For instance, if the Patient file is in the state [furtherDiagnosis],
the fragments Biopsy and Tomography are enabled. The knowledge worker can
then decide which of them to be executed. As soon as one of the two fragments
is started, the other fragment is not enabled anymore because the data Patient
file [furtherDiagnosis] is not available anymore [20]. Still, after executing
one of them, the patient file can be again in the state [furtherDiagnosis],
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such that both fragments can be executed in one case. Formally, we define an
fCM case model as follows:

Definition 1 (fCM case model) An fCM case model is defined by the tuple
cm = (namecm, D,G, F ) where:

– namecm : cm→ String is a function assigning a case model a label.
– D = (C) is the domain model of the case where C is a non-empty finite

set of classes. Let c ∈ C be a data class, and Qc the set of possible states
for objects of class c. Furthermore, let t ⊆ Qc × Qc be the set of valid
state transitions for the class c. The object life cycle of c is a state transi-
tion system l(c) = (Qc, t). l(C) and describes the set of object life cycles
corresponding to the classes in C.

– G = {cond1, cond2, ..., condn} ⊆ P(DC) is a set of goal conditions (being
a subset of power set of DC). Each condi ∈ G can consist of several data
conditions, which need to be fulfilled. A data condition dc ∈ DC is in form
of c[qc], where c ∈ C and qc ∈ l(c).Qc. The case can terminate if for any
condi ∈ G, all data conditions dc ∈ condi are satisfied.

– F is a non-empty, finite set of fragments.

Definition 2 (Fragment) Let f ∈ F be a fragment defined by a tuple f =
(namefra, N,→, s, read, write) where:

– namefra : f → String is a function assigning a fragment a label.
– N = NA ∪NG ∪NE is a non-empty, disjoint set of activities NA, gateways
NG, and events NE .

– →⊂ (N)× (N) is the control flow between the nodes.
– s ∈ {blank, conditional,message} ⊂ NE is the start of a fragment and the

function σ : s → Cond = {cond1, cond2, ..., condn} ⊆ P(DC) assigns the
start a set of enablement conditions:
– a fragment with s = blank is enabled and can be started anytime by a

knowledge worker,
– a fragment with s = conditional is enabled as soon as condi ∈ σ(s) is

available and all dc ∈ condi are satisfied,
– a fragment with s = message is enabled if a certain external event

occurs.
– read : A → P(DC) assigns each activity a set of data conditions. For an

activity a ∈ A, read(a) returns the data conditions that can be read by
a. READ : f → P(DC) provides for a given fragment f a set of data
conditions read by the activities NA of the fragment f .

– write : (A ∪ {s}) → P(DC) assigns each activity a second set of data
conditions. Given an activity a ∈ A, write(a) returns the data conditions
that can be written by a. WRITE : f → P(DC) provides for a given
fragment f a set of data conditions written by the activities NA of f .
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2.4 Process Overviews

Process overviews – a term used in this paper for referring either to a process
map, landscape, or top-level model of a process architecture (often referred to
simply as process architecture) – support reasoning and analysing the structure
of a business process collection, leaving aside much detail of individual pro-
cesses [10,13]. In such level of abstraction, individual processes are depicted
as black boxes and, therefore, the focus of the model is on the structure of
the process collection [10,13]. Compared to detailed process models, process
overviews allow representing more straightforwardly: (a) high-level concepts
regarding a single process, such as inputs/outputs; as well as (b) concepts re-
garding the relationships between processes, such as control and data flow. We
briefly discuss different process overview approaches in the following.

Process maps are usually easily readable by non-technical users due to
being modeled with a small set of concepts with lax semantics. It might consist
solely of a hierarchical classification of processes, or also inputs/outputs of the
constituting processes might be specified [31]. In the Process Map approach by
Malinova [30], data is considered at a very high level of abstraction: data-flow
between processes is shown as directed arcs while leaving out details about
the involved data.

Process architectures are more technically oriented and each represented
concept has precise semantics. An example of a language for process archi-
tectures is provided by Eid-Sabbagh et al. [11,12]. In this approach, although
data is used for the identification of process relations, the language does not
include elements for the explicit representation of data. Relations are repre-
sented by connecting events that are relevant to the processes. An interesting
aspect of the approach by Eid-Sabbagh et al. is the use of logic operators in
the architecture models: these operators show conjunction and exclusion rules
for the execution of processes.

ArchiMate [47] has become the industry standard for modeling enterprise
architectures and can be used to model process architectures as well [14]. The
standard supports the representation of data, but not of their states.

Process landscapes could be seen as the middle ground between process
maps and architectures. Proposals in this area also struggle with the issue of
ensuring an adequate level of understandability, e.g. [4,17].

Altogether, multiple approaches have been proposed to convey overviews
for collections of processes. The present work extrapolates and reuses some
concepts of process overviews for generating a high-level overview of a given
fCM case model. An analogy is made between processes in a process overview
and fragments in an fCM case model. This analogy is the base for creating a
new model, termed fCM landscape (fCML) that is complementary to the fCM
case model from which it was generated.
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3 Requirements and Design of a Case Model Landscape

As previously stated, this work focuses on a specific approach for case modeling
named fragment-based Case Management (fCM). Our aim is proposing an
extension for the fCM-language, i.e. the language used for case models in fCM.
Such an extension will allow to create new views for fCM case models: fCM
landscapes (fCMLs). fCMLs pursue capturing essential aspects of fCM case
models while leaving aside some detail to provide better understandability of
control flow and data aspects.

Requirements for an fCML are defined in Sect. 3.1 together with general
design decisions. Finally, detailed design decisions are discussed in Sect. 3.2.

3.1 Requirements and general design decisions

Some works present potential requirements and classification frameworks for
KiPs to be reused and extended, e.g. [9,46]. However, we believe it is more
adequate to define the requirements for an fCML based on the limitations
in the understandability of fCM case models. Particularly, previous studies
like [19] show that readers find it challenging to understand some aspects of the
control perspective (i.e. the logical order of fragments) and data perspectives
(i.e. how information is exchanged between fragments) in an fCM case model.
However, the control and data flow are key to the comprehension of processes
at design-time [51]. We advocate that the understandability challenges are
mainly rooted in two main features of fCM case models: namely, their low
abstraction level and their use of sub-models. Having this in consideration,
this work proposes using an fCML as a complementary model for an fCM
case model that overcomes the aforementioned issues. The requirements for
an fCML and our general design decisions to target these requirements are
summarized in Table 2 and described in the following:

– R1. An fCML should be consistent with the respective fCM case
model. An fCML provides an alternative view of a process represented by
an fCM case model. Consequently, both models must be consistent in terms
of representing the same process. This requirement involves that building
an fCML from a given fCM case model should be possible by applying a
set of mapping functions to the fCM case model to obtain the fCML.
Design decision: The proposed work defines such a set of mapping func-
tions.

– R2. An fCML shouldbe a coarse grained (simplified) represen-
tation of its corresponding fCM case model. The fine grained fCM case
models imply a high cognitive load, which makes it harder to find the spe-
cific pieces of information in the model [19]. For example, a large number
of event nodes in an fCM case model need to be visually inspected in order
to find the start node.
Design decision: The abstraction level of the model is modified in our
proposal by hiding the detailed logic of each process fragment. Accordingly,



Case Model Landscapes 11

process fragments in an fCML will be depicted as black-boxes, analogously
to how processes are depicted in process overviews, e.g. [11,30].

– R3. An fCML should consist of a single model. While the use of
multiple sub-models in fCM case models allows to decouple different types
of process information, the reader of such model needs to inspect multiple
sub-models to find some information, e.g. the reader needs to inspect every
fragment model plus the goal state sub-model before they can identify the
end of the KiP. A single model is needed to understand how the detailed
models are in connection to each other similar to what process overviews
provide for a collection of business processes [10] and the coordination
process of Philharmonic flows for a set of object lifecycles [6].
Design decision: An fCML is proposed as a single model based on the
diverse sub-models for a given fCM case model.

– R4. An fCML should highlight the control perspective of the KiP.
Understanding the control flow between process fragments of an fCM case
model can be challenging since the reader needs to inspect multiple nodes,
namely data conditions and data outputs of each process fragment [19,53].
Thus, it is the aim to provide the reader a better understandable model of
the fCM with the control flow connection from the start to the end.
Design decision: The proposed work highlights the control perspective
extrapolating some concepts used in procedural models [39] and some pro-
cess overview approaches such as [11,30].

– R5. An fCML should highlight the data perspective of the KiP.
Data plays a key role in knowledge-intensive processes [9]: In fCM, process
fragment models show data produced/consumed during the process. Data
is essential for the enablement of fragments as well as describing the case
goal, such that data exchanged between fragments should be captured in
a case model.
Design decision: The present work wants to highlight the data perspec-
tive by showing data nodes as part of the process flow in fCMLs.

3.2 Detailed Design Decisions

Together with fCM [20], a set of languages for process overviews and CM ap-
proaches was assessed to identify concepts that could be extrapolated to fulfill
the requirements for an fCML previously discussed in Sect. 3.1. The justifi-
cation for selecting these works is that they are either the industry standards
in their fields – ArchiMate [47] and CMMN (Case Management Model and
Notation) [40] –, or they are representative and well-documented proposals
from the research community – Process Architecture by Eid-Sabbagh [11,12]
and Process Maps by Malinova [30].

– High-level overview. An fCML is required to map information scattered
between the multiple sub-models of an fCM case model into a single model
(see R1 in Sect. 3.1). We decide to enclose this high-level overview of the
KiP in a container. This design decision is based on the fact that approaches
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Table 2 Overview of requirements and design decisions.

Requirement Design decisions
R1. An fCML should be

consistent with the respective
fCM case model

A set of mapping functions is defined to generate an
fCML based on a given fCM case model.

R2. An fCML should be a
coarse grained (simplified)

representation of its
corresponding fCM case model.

Each fragment in an fCM case model is collapsed into a
single notational element with the name of the

respective fragment in the fCML.

R3. An fCML should consist of
a single model.

fCML as a labeled container enclosing a high-level
overview from the start to the end of an fCM case model

as graph-based representation.

R4. An fCML should highlight
the control perspective of the

KiP.

An fCML explicitly represents when a case can start/end
using events. Between these points, control flow is

depicted using directed connectors and logic operators.

R5. An fCML should highlight
the data perspective of the KiP.

Data is explicitly represented in an fCML. Data nodes in
an fCML show the data that is read/written by
fragments and the goal state of the case model.

for CM and process overviews consider often a container specifying the
limits of what lies within the case model (e.g. [40]) or process collection
(e.g. [30]), respectively. Similarly, we want to present an fCML as a labeled
container enclosing a high-level overview from the start to the end of an
fCM case model as graph-based representation.

– Case start. A key aspect for understanding control flow in a process (see
R4 in Sect. 3.1) is identifying when it starts. An fCM case model can be
started by a knowledge worker at any time and then all fragments with a
blank start event are enabled. Additionally, external events can trigger the
execution of a new case. For an fCML, we want to represent the manual
start of a KiP explicitly as a case start connecting to all enabled fragments,
whereas external events will be covered by the external triggers later. The
use of events was found to be the most common way to represent the start
in the reviewed works (e.g. [11,40,47]).

– Data object. Being a data-centric approach, data plays a key role in fCM
case models (see R5 in Sect. 3.1). In fCM, the term data object corresponds
to a data type that holds one of its lifecycle-defined states1. Data is ex-
plicitly represented in CMMN [40] and some process overviews approaches
(e.g. [30,47]). However, these works omit the specification of a lifecycle-
defined state considered in fCM. We, therefore, decide than an fCML will
maintain the representation of data types used in fCM case models: BPMN
data objects labeled with the name of the data type and its state.

– Data condition. In fCM, data objects may constitute data conditions,
which include the combination of data objects via logic operators. Data
conditions are involved in both the data- and the control- perspective of
fCM case models (see R4 and R5 in Sect. 3.1) because they determine

1 In other contexts, e.g. UML, a data object corresponds to an instance of a data type.
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data-based process fragment relations and the case end. Regarding data
conditions, no other reviewed work considers them in the sense that they
are considered in the fCM approach. CMMN [40] includes data conditions,
but only to a limited extent, since there is no notation for such an element
and, instead, it is considered as a parameter of another element called
sentry. In an fCML we include the concept of data conditions as in fCM
case models, but without using the same notation (i.e. BPMN conditional
start event). Instead, we decide to combine the symbols for data objects
and pre-requisites.

– Case end. In fCM, the case end is enabled by fulfilling the data condition
termed the goal state. The goal state needs to be true before a knowledge
worker can terminate the KiP. The goal state is not included in fragment
models but in another sub-model, demanding that the reader reviews mul-
tiple pieces of information to understand this data-related aspect of control
flow (see R3, R4, and R5 in Sect. 3.1). The ending point is represented in
different ways among the reviewed works: as an event [11], an external out-
put [30], or a goal [47]. None of these approaches is expressive enough to
represent the fCM concept of enabling case end via reaching a goal state.
Representation of case end in an fCML is rather inspired in BPMN. Case
end is represented by a BPMN blank end event and it is linked to the
respective data goal condition.

– External trigger. The fCM approach considers that external events may
trigger a new case or certain process fragments in a running case. This fea-
ture is key to control flow (see R4 in Sect. 3.1). As in the fCM approach,
all other reviewed works (see [11,31,40,47]) represent external triggers as
events. Each of these approaches uses a different symbol for that. For
fCMLs, we decide to reuse the symbol for external trigger in fCM case
models: the BPMN message start event.

– Fragment. An fCM case model offers a detailed representation of each
process fragment constituting the respective KiP. The granularity of this
representation poses a challenge for the reader interested in having an
overview of the control flow (see R2 and R4 in Sect. 3.1), and thus fCMLs
should provide a more abstract representation of process fragments. In
CMMN, the concept of fragment is embodied by the so-called stages [40].
The analogous concept for fragments in process overviews is that of a sub-
process (see [11,31,47]). Based on this, we decide that in an fCML each
process fragment model should be collapsed into a single notational element
with the name of the respective fragment.

– Fragment pre-requisite. In the fCM approach, each fragment is said to
have one pre-requisite that needs to be fulfilled before the fragment can be
executed. This includes three possibilities: (i) blank corresponding to the
lack of a pre-requisite and can manually be started any time (cf. case start);
(ii) external trigger corresponding to a fragment that is enabled by an ex-
ternal event (cf. external trigger), and (iii) data condition corresponding
to a fragment that can only be executed once some data condition is true.
Being able to identify these possibilities is critical for understanding the
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control flow of the KiP (see R4 in Sect. 3.1). The concept of pre-requisite
is found in CMMN [40]. This language provides an element called entry
criterion depicted as a blank diamond. In fCMLs, we plan to reuse this
element at the border of the respective fragment and linked it to the re-
spective pre-requisite (i.e., a BPMN event of type blank, external trigger,
or data condition).

– Fragment relations. A key aspect of fCM is that the relations between
fragments are based on data: when certain data is created by a fragment,
then other fragments might be enabled, such that they can be executed
by the knowledge worker. However, some effort is required for identifying
these data-based relations in fCM case models (see R4 and R5 in Sect.
3.1). In the reviewed works, process/fragment relations are represented
using - sometimes differentiated - connectors [11,31,40,47] and sometimes
also logic operators [11,40,47]. For fCMLs, fragment relations we also
use connectors and logic operators but, additionally and for the sake of
expressiveness, the involved data objects should also be shown. The logic
operators considered are AND, OR, and XOR. However, in our original
proposal [15] we had merged the OR and XOR operators into one symbol.
This constitutes a semiotic clarity problem [36] identified after the user
study. We solved this by providing one symbol per semantic construct, i.e.
XOR and OR.

– Fragment optionality. A central aspect of fCM is that fragments are
combined depending on the case at hand. This means that only some frag-
ments are included in all possible executions of a KiP. We rank the con-
cept of fragment optionality as useful for improving the expressiveness of
the control flow (see R4 in Sect. 3.1) since it eases the differentiation be-
tween the fragments that are always executed and those that are not. Only
CMMN [40] defines an explicit notational element for showing which parts
of the case model are optional. This work depicts discretionary elements
as dashed-edged and we want to reuse them as well for fCMLs.
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Table 3 Modeling elements of the fCM-language extension for fCML.

Element Description Notation

Case end End of the model, it is enabled due to achieving
the goal state.

Case start Start of a case model. If a new case of the model is
instantiated then it is started with the succeeding
process fragment.

Connector Causal relation between the elements of the
model.

Data object Data type holding a particular state in which it
is consumed/produced by a process fragment.

Data object, goal
state

Data condition that must be fulfilled for the ter-
mination. This can also be a combination of data
conditions via logic operators.

External trigger External occurrence of an event, which is relevant
for the case. It enables the start of the succeeding
process fragment.

fCM landscape Container of a landscape for a specific case model.

Logic operator, AND Forking or merging of paths following the logic of
a logical AND-operator.

Logic operator, OR Forking or merging of paths following the logic
of a logical OR-operator whereby multiple frag-
ments are enabled but only one can make changes
on one data type at a time.

Logic operator, XOR Forking or merging of paths following the logic of
a logical XOR-operator.

Pre-requisite Data pre-condition or an event that enables the
start of a process fragment.

Process fragment,
non-optional

Non-optional process fragment that needs to be
executed in every possible execution of the KiP.

Process fragment, op-
tional

Optional process fragment that is not necessarily
executed in every possible execution of the KiP.

4 Extension of fCM-language for Modeling Landscapes

After identifying its requirements and discussing design decisions in view of
related works, this section provides a detailed description of the extension of
the fragment-base Case Management (fCM) language for modeling an fCM
landscape (fCML). In this section, we first present the language rather infor-
mally based on the running example of the medical consultation in Sect. 4.1,
and then, we introduce the abstract syntax and the semantics of the elements
of an fCML in Sect. 4.2.
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Fig. 2 Case Model Landscape for medical consultation.

4.1 Exemplified Case Model Landscape

Fig. 2 shows an fCML for the medical consultation knowledge-intensive pro-
cess (KiP) example on which we will explain the elements of an fCML. It is
generated from the fCM case model in Fig. 1. As an overview, the elements of
the proposal, a short description, and the notation are given in Table 3.

The case model always starts with the Admission fragment, which follows
the blank start event. Each fragment has a pre-requisite shown as an unfilled
diamond at the border of the fragment. The pre-requisite describes the con-
dition that must be satisfied to start a fragment. It is also possible that data
is produced (written) or consumed (read) by a fragment. The Admission frag-
ment has no data condition – it simply starts by initiating a new case – but it
produces a PatientFile[created] data object, needed as a pre-requisite by
the Diagnose fragment.

During the execution of the Diagnose fragment, a PatientFile[further

Diagnosis] can be produced which is visualized by an outgoing arc from the
fragment connected to the data object. If the data object is available, the
optional Biopsy fragment or the optional Tomography fragment, or both can
be executed in one case. Still, if one of the fragments is started, the other one
cannot be executed and do changes on the data object which is currently used
by the other fragment. This construct is represented by a logical OR-operator
connected to the pre-requisite of both fragments. These two fragments do not
need to be executed in every case, they are optional which is shown by a
dotted borderline. Both fragments could produce a data object PatientFile

in furtherDiagnosis or diagnosed, also represented with the help of a logical
OR-operator. In the case of furtherDiagnosis, the two just discussed fragments
can be restarted. In the other case, the Diagnose fragment is continued, which
is shown by the incoming connector into the fragment symbol.



Case Model Landscapes 17

This fragment produces either the PatientFile in surgeryNeeded or medi-
cationNeeded, enabling the optional fragments Surgery or Medication, respec-
tively. Both the fragments can produce PatientFile[finished] representing
the goal state of the model and leading to the end event, the end of the model.
The Medication fragment can also result in PatientFile [medicationNeeded]

as alternative, re-enabling this fragment.
During the execution of the KiP, also a relevant event for this business

scenario can occur – Patient suffers from cardiac arrest. Represented by a
message start event, this event triggers the CPR fragment. It also results in
the PatientFile [medicationNeeded] data object. The logic OR-operator
above this data object implies that PatientFile[medicationNeeded] can
be the result of three fragments: the Diagnose, the Medication, or the CPR
fragment.

In this example fCML, the AND-operator was not applied. This can be
used to represent the need for several data objects to enable a fragment, or
different data objects being produced by a fragment.

4.2 Syntax and Semantics of a Case Model Landscape

After having discussed fCMLs on an example, we will revisit the elements for
building such models in this section. In the end, we defined 12 elements for
fCMLs. Table 3 provides an overview of these elements and their respective
symbols. As previously discussed in Sect. 3.2, we decided to reuse notational
elements from BPMN (Business Process Model and Notation) and CMMN
(Case Management Model and Notation) – both standards of the Object Man-
agement Group having a high recognition factor by business people working
with process models. We mostly reuse the notational elements of BPMN and
CMMN in such a way that they still have their original meaning.

Formally, a fCML is defined as follows:

Definition 3 An fCML is defined by tuple cml = (namecml, N, η, τ, R, cs, ce)
where:

– namecml : cml→ String is a function assigning each case model landscape
a label.

– N = NF ∪ ND ∪ NC ∪ NO is a non-empty, disjoint set of fragment nodes
NF , data object nodes ND, event nodes NC , and logical operator nodes
NO.
– A data object node nD ∈ ND is defined by the tuple nD =

(class, state, goal) where class is the data type, state is the current
state of the data object, and goal ∈ {true, false} indicating whether a
data object is part of the goal state.

– A fragment node nF ∈ NF is defined by the tuple nF =
(nameF , optional, prerequisite) where nameF : nF → String is a func-
tion assigning each fragment node a label, optional ∈ {true, false}
indicating whether a fragment is optional or non-optional, and
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prerequisite ∈ {blank, conditional,message} assigning a fragment a
prerequisite, which defines the enablement conditions of a fragment.

– η : NC → {start, end,message} is a function that assigns each event node
a type.

– τ : NO → {AND,OR,XOR} is a function that assigns the logical opera-
tors a type.

– R ⊂ (N)× (N) is the causal relation between the nodes.
– cs ∈ NC , η(cs) = start represents the initial start of the landscape, the

case start.
– ce ∈ NC , η(ce) = end represents the possible termination of a case model

because its goal state was reached, the case end.

An fCML should provide a high-level overview of the allowed behavior by
the KiP and the possible relationships between its fragments. This will be
supported by a graph-based representation showing the abstracted behavior
of a knowledge-intensive process from start to end. An fCML for a given fCM
case model contains a set of nodes (fragment, data, and event nodes as well as
logical operators) and connectors between them. In contrast to an fCM model,
the case start and the case end, as well as the prerequisites for fragments are
explicitly represented in an fCML.

The semantics of the elements and their relations will be textually described
in the following. We also provide the rules for building an fCML based on an
fCM case model.

– fCM landscape. An fCML encompasses a landscape for a specific fCM
case model with the name of the KiP. It consists of a set of nodes, causal
relations between these nodes (which will be empty at the beginning), a
case start reflecting the initialization of the model, and a case end repre-
senting the termination of the model. The fCM landscape is visualized as
a rectangular container that is labeled with the name of the corresponding
fCM model and includes all its elements.

– For a given fCM case model, one fCM landscape with the name of the
KiP is generated for the respective fCML:
cm⇒ cml = (cm.namecm, N, η, τ, R, cs, ce), whereby N = {cs, ce}

and R = ∅.
– Fragment. An fCML includes a set of fragment nodes. A fragment node

is the abstracted representation of the original fragment and is depicted
as a round-edged rectangle that shows the name of the fragment and no
further details. It has an attribute indicating whether it is optional or not
for the case model execution. Optional fragments are visualized with dot-
ted boundaries in comparison to non-optional fragments. The enablement
conditions of a fragment are represented as a prerequisite, and further spec-
ified based on its different trigger-associations to the other elements. The
notation for a prerequisite is a blank diamond located in the boundary of
a fragment symbol.
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– For each fragment in a given fCM case model, a fragment node with
the name of the fragment and a prerequisite from the same type as the
start of the fragment is generated in the fCML:

∀f ∈ cm.F ⇒ {nF } ∪NF with (f.namefra, optional, f.s).
Whether a fragment is optional is defined as follows:
• optional = false if the start of the respective fragment can be ob-

served in each possible execution trace of a case model, which leads
to the goal state. Please note that a fragment can be in different
states (i.e. enabled, disabled, active, finished, and aborted) during
its execution as described by Hewelt and Weske in [20]. It is active
as soon as it is started by a knowledge worker.

• optional = true if its start cannot be observed in each execution
trace of a case model, which leads to the goal state.

If a case fragment has a blank start event, the case start of the fCML is
linked via a causal relation to the corresponding fragment node (visually a
connection with the prerequisite of the fragment node):

∀nF ∈ NF , nF .prerequisite = blank ⇒ {(cs, nF )} ∪R.

If more than one fragment with a blank start event exists, then a logical
operator, an OR, will be added between the case start and the fragment nodes,
such that:

|(cs, ni)| > 1, i = {nF1, ..., nFn} ⇒ ({nOR} ∪NO, τ(nOR) =
OR ∧ {(cs, nOR)} ∪R) ∧ (∀ni ⇒ {(cs, ni)} \R ∧ {(nOR, ni)} ∪R).

It shows that several fragments can be executed right after the start but do
not need to. The knowledge worker can decide which of the fragments are
executed.

– External trigger. Fragments can be enabled by external events, such that
they are ready to be executed once the event has occurred. Relevant exter-
nal events for the start of fragments are represented in the fCM landscape
as an event node, depicted as BPMN message start event (unfilled circle
with a letter shape inside).

– Each fragment node with an external trigger as prerequisite, an event
node of type message is generated, and the event node is connected
with the fragment node:

∀nF ∈ NF , nF .prerequisite = message⇒ {nC} ∪NC , η(nC) =
message ∧ {(nC , nF )} ∪R.

– Data object. A data object node in an fCML shows a data condition (i.e.,
data of a specific type in a specific state) of the fCM case model that is of
relevance for the fCML. Namely, if data condition is part of the conditions
enabling a fragment (i.e., referenced in the conditional start event of the
respective fragment), or is part of the goal state of the fCM case model. If
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a data condition is read during the execution of a fragment, which is pro-
duced by another fragment (e.g., PatientFile[diagnosed] in Fig. 2), it
is also represented as a data object node in the fCML because it shows an
exchange between fragments. Intra-fragment data is not shown because we
focus on the landscape on enablement and interrelations of the fragments.
Regarding notation, a data object node is represented by a document-like
symbol labeled with the name of the data type followed by its state be-
tween square brackets. The symbol is depicted in bold when referred to as
the goal state (i.e., in the causal relation with the case end).

– Fragments of the given fCM case model can have a prerequisite consist-
ing of data conditions, which need to be fulfilled for the enablement of
a fragment. For each data condition being part of a prerequisite, a data
object node is generated in the fCML, which is in a causal relation with
the respective fragment node. Thereby, data conditions being part of
the same condi ∈ COND of a fragment have to be both available, such
that an AND operator is generated between them. Data conditions of
different conditions are connected via a OR operator:

∀nF ∈ NF , nF .prerequisite = conditional→ (∀cond ∈
σ(f.s), f.namefra = nF .nameF → (∀dc ∈ cond→ {nD =

(dc.c, dc.[qc], false)} ∪ND ∧ (nD, nF ) ∪R) ∧ (∃|(ni, nF )| > 1, i =
{D1, ..., Dn} → ({nAND} ∪NO, τ(nAND) = AND ∧ {(nAND, nF )} ∪
R) ∧ (∀ni ⇒ {(ni, nF )} \R ∧ {(ni, nAND)} ∪R)) ∧ (∃|(nj , nF )| >

1, j = {D1, ..., Dn,AND} → ({nOR} ∪NO, τ(nOR) =
OR ∧ {(nOR, nF )} ∪R) ∧ (∀nj ⇒ {(nj , nF )} \R ∧ {(nj , nOR)} ∪R)))

– Analogously to the above, for each data condition defining the goal
state of the given fCM case model, a data object is generated in the
fCML, which is in a causal relation to the case end:

∀cond ∈ cm.G→ (∀dc ∈ cond→ {nD =
(dc.c, dc.[qc], true)} ∪ND ∧ (nD, ce) ∪R) ∧ (∃|(ni, ce)| > 1, i =

{D1, ..., Dn} → ({nANDgoal} ∪NO, τ(nANDgoal) =
AND ∧ {(nANDgoal, ce)} ∪R) ∧ (∀ni ⇒

{(ni, ce)} \R ∧ {(ni, nANDgoal)} ∪R)) ∧ (∃|(nj , ce)| > 1, j =
{D1, ..., Dn,ANDgoal} → ({nORgoal} ∪NO, τ(nORgoal) =

OR∧{(nORgoal, ce)}∪R)∧(∀nj ⇒ {(nj , ce)}\R∧{(nj , nORgoal)}∪R))).
– For each data node added, the producing fragment node is identified

and a causal relation added. If one data condition can be produced
from different fragments, then an OR operator is added between the
fragments and its representing data object node:
∀nD ∈ ND → (∀f ∈ cm.F, nd.dc ∈WRITE(f1)→ {(nF , nD)} ∪
R,nF .nameF = f1.namefra ∧ (∃|(ni, nD)| > 1, i = {F1, ..., Fn} →

({nORprod} ∪NO, τ(nORprod) = OR ∧ {(nORprod, nD)} ∪R) ∧ (∀ni ⇒
{(ni, nD)} \R ∧ {(ni, nORprod)} ∪R)))

– For each data condition read by an activity in a fragment, which can
also be written by an activity of another fragment of the given fCM
case model, a data object node is generated in the fCML. This data
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is in a causal relation with the two respective fragment nodes in the
fCML:
∀dc ∈WRITE(f1) ∧ dc ∈ READ(f2), (f1, f2) ∈ cm.F ∧ f1 6= f2 ⇒
nD = (dc.c, dc.[qc], false) ∪ND ∧ {(nF , nD)} ∪R,nF .nameF =

f1.namefra ∧ {(nD, nF )} ∪R,nF .nameF = f2.namefra.
– If the same fragment can produce several data conditions having the

same data type but in different states, then an XOR operator is added
between the fragment node and the alternative data object nodes, which
can be produced:

∃(|(nF , ni)| > 1, i = {D1, ..., Dn} ∧ ni1, ni2 ∈ i, ni1.class =
ni2.class)→ {(nOpro} ∪NO, τ(nXOprod) = XOR ∧ {(nF , nXOprod)} ∪

R) ∧ (∀ni ⇒ {(nF , ni)} \R ∧ {(nXOprod, ni)} ∪R))

5 Evaluation

The proposed language for modeling overviews of fragment-based Case Man-
agement (fCM) case models – i.e. fCM landscapes (fCMLs) – was evaluated
in a laboratory experiment. The goal of the experiment was to assess model
interpretation for the aspects of fCM case models that can be represented in
an fCML. Consequently, we compared model interpretation of these two types
of models to verify whether the use of an fCML would ease model interpreta-
tion with respect to an fCM case model. In the experiment, the participants
were asked to answer questions on knowledge-intensive processes (KiPs) rep-
resented using the different notations. The correctness of the answers, as well
as the time needed, was measured to assess interpretation effectiveness, effort,
and efficiency as proposed by [5,30]. Open-ended questions were asked to the
participants after using each language. The experimental design is described
in Sect. 5.1, demographics are shown in Sect. 5.2, quantitative and qualita-
tive analyses are presented in Sect. 5.3 and 5.4, respectively, and discussion is
provided in Sect. 5.5.

5.1 Experimental Design

A quasi-experimental design was created for conducting a quantitative as well
as a qualitative evaluation of the proposed extension of the fCM-language. The
independent variable of the experiment is the modeling language: the proposed
extension vs. the fCM-language.

The experiment was a two-treatment factorial crossover design where the
experimental object was a two-level blocking variable. In the experiment, each
subject had to read an fCM case model for a given KiP (control treatment
or C) followed/preceded by reading an fCML of another KiP (experimental
treatment or E). The different KiPs used were traumatology emergency [35]
(experimental object H) and organization of a business trip [21] (experimen-
tal object B), and their control and treatment model variants, available in the
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Appendix of the paper were designed to be informationally equivalent2 and
were available during the whole experiment as recommended by Parson and
Cole [41]. Altogether, this resulted in the following four sequences: EH/CB
(sequence A), CB/EH (sequence B), EB/CH (sequence C), and CH/EB (se-
quence D), as shown in Table 4. For example, in sequence A subjects were
exposed to the experimental treatment for the traumatology emergency pro-
cess in the first period and, to the control treatment for the business trip
organization process during the second period.

The experimental subjects were engineering senior undergraduate students
with process modeling background from the Chilean university Pontificia Uni-
versidad Católica de Chile. Each subject was assigned to one of four different
groups: each group corresponded to one of the four previously described se-
quences (see Table 4). Subjects were assigned to the groups according to the
initial letter of their last names. This allowed to form four groups of similar
size, as shown in Table 4.

Table 4 Crossover design, participants, and valid observations.

Sequence Period 1 Period 2 No. of participants No. valid observations
A EH CB 9 9
B CB EH 13 13
C EB CH 12 11
D CH EB 13 11

The experiment was conducted using a Google Forms questionnaire3. The
models and materials of the experiment were designed in Spanish, the native
language of the participants and the researchers conducting the evaluation.
However, Table 5 provides a translation of the questions of the survey to the
English language. The questions consist of a set of demographic questions
(items 1-4 in Table 5), a set of true or false statements regarding case model
interpretation (items 5-22 in Table 5), two open-ended questions (items 23 and
24 in Table 5), and one open-ended question to assess difficulties regarding the
questions (item 25 in Table 5). The statements regarding model interpretation
address data and control-flow aspects that are common to an fCM case model
and an fCML.

Each respondent was first asked the demographic questions, and were then
provided a basic self-training material on CM and the fCM approach by the
researchers. Before reading each model, the respective language was explained
to the subjects and they were then asked to report the current timestamp. Af-
terward, subjects were asked to answer the set of questions regarding a model
of one of the KiPs, after which they were asked to report once again the cur-
rent timestamp. The total time used for answering the model interpretation
questions was calculated as the difference between the two reported times-
tamps. Finally, the open-ended questions were asked regarding perceptions in

2 W.r.t. aspects measured in the quantitative analysis (see Sect. 5.3).
3 Forms and raw data available at https://tinyurl.com/u7ogtyb
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using the given language and problems regarding the questionnaire. Then, this
was repeated for the other KiP using the other language. The experiment was
carried out in a dedicated room during a single two-hour session led by two of
the paper authors. At the beginning of the session, they provided each subject
with printed versions of the models and an informed consent form. Then, the
researchers described the experiment and its instructions, gave access to the
questionnaire of the assigned treatment to the participants, and monitored the
execution of the experiment. After finishing their participation, each subject
would leave the room after handing out – to one of the researchers – their
signed informed consent form.

Table 5 Questions of the survey.

Id Question
1 Besides the Process Modeling course in which you are currently partaking, have you

participated in other theoretical or practical process modeling training?
2 Are you familiar with Case Management?
3 How many times have you observed/participated in a trip?
4 How many times have you observed/participated in the provision of medical emergency

aid?
5 The first fragment to be executed is [fragment label name].
6 The event [external event label] enables the execution of the fragment [fragment label].
7 The model has a total of [number] fragments.
8 The last fragment of the process is [fragment label].
9 The condition [data condition] enables the execution of the fragment [fragment label].
10 A [data object] is generated by the fragment [fragment label].
11 Having a [data object] is sufficient for enabling the execution of the fragment [fragment

label].
12 As soon as the fragment [fragment label] ends, a [data object] is generated.
13 The execution of the fragment [fragment label] changes [data object] into [data object].
14 Having a [data object] is sufficient for enabling the termination of the process.
15 The model has [number] fragment(s) that are executed in every process instantiation.
16 The fragment(s) [fragment(s) label(s)] are not executed in every process instantiation.
17 The fragment [fragment label] can be executed after the fragment [fragment label] has

ended.
18 If the fragment [fragment label] has started, it implies that the fragment [fragment

label] must have previously ended.
19 Until the fragment(s) [fragment(s) label(s)] have not been executed, the fragment [frag-

ment label] cannot be executed.
20 In some instances of the process, fragment [fragment label] can be executed before

fragment [fragment label].
21 The fragment [fragment label] can be executed multiple times within the same process

instance.
22 The fragment [fragment label] can be executed more than once during the same process

instance.
23 Describe the positive aspects of the language, if any.
24 Describe the negative aspects of the language, if any.
25 Describe difficulties you had with the questions, if any.

The previously described design is based on a pilot study reported in [15].
The main difference between the pilot study and the experiment reported
here is that the former was conducted online while the latter was conducted
in a controlled environment. The studies also differ regarding subjects and
language: while the pilot was run in English with students from the Hasso
Plattner Institute, University of Potsdam, Germany, the experiment reported
here was run in Spanish with students from Pontificia Universidad Católica
de Chile, Chile. From the experience gained due to the pilot, the following im-



24 Gonzalez-Lopez, Pufahl, et al.

provements were included in the experiment: increased sample size, improved
wording of questions, randomization of questions for each form, addition of
open-ended questions, and adaptation of models to even complexity between
control and experimental treatments4.

5.2 Demographics

The subjects of the experiment share a common background due to their
enrollment in a Process Modeling course when partaking in the experiment.
The sample size was 47. However, issues with rebooting of the questionnaire
reduced the number of valid observations to 44, as shown in Table 4. The
subsequent analysis is concerned with these valid observations, of which de-
mographics are presented in Fig. 3 and Fig. 4. As shown in Fig. 3, nearly half
of the subjects claim to have experience regarding process modeling other than
the one gained in the course. However, most of the subjects declare no famil-
iarity with case management. As shown in Fig. 4, nearly all subjects declare
some experience observing or participating in the organization of a trip, and
nearly half in an emergency room as patients.

Fig. 3 Process modeling experience.

5.3 Quantitative Analysis

Following the guidelines by Burton-Jones et al. [5], the experiment dependent
variables are interpretation effectiveness - i.e., how faithfully the interpreta-
tion of the model represents the semantics of the model -, interpretation effort
- i.e., resources needed to interpret the model -, and interpretation efficiency -
quotient of them both. Interpretation effectiveness was measured as the total
score of the set of true-or-false questions (1 point per correct answer), interpre-
tation effort was measured as the total time (in minutes) used by a subject to

4 As a complexity measure, we used the number of nodes as proposed by Mendling et
al. [34]. The nodes for fCM case models include events, activities, data objects, and gate-
ways. The nodes for fCMLs include all elements in Table 3 except connectors and the fCM
landscape.
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Fig. 4 Process experience.

complete the task, and interpretation efficiency was calculated as the quotient
of the previous measurements.

Fig. 5 summarizes the data gathered in the experiment. Overall, data in
Fig. 5 for the interpretation effort and efficiency is shifted towards a better
performance for our proposal. Regarding the interpretation effectiveness, its
average is marginally lower for the extension (15.1/18 points) than for the fCM-
language (15.6/18 points). Again on average, better results can be observed
for the interpretation effort when using the proposal (10.7 min) in comparison
to the fCM-language (13.5 min). On average, regarding interpretation effi-
ciency, the proposal (1.5 points/min) slightly outperforms the fCM-language
(1.3 points/min).

Fig. 5 Descriptive statistics of the experimental dependent variables.

Data was analyzed using a Linear Mixed-Effects (LME) model for tak-
ing into consideration data dependency due to repeated measures, as well as
random effects due to having repeated measures over subjects [49]. We ana-
lyzed the effect of fixed and random factors in each of the dependent variables,
namely effectiveness, effort, and efficiency of model interpretation. Fixed fac-
tors included treatment (Treat), sequence (Seq), period (Period), familiarity
with a business trip (FamB), and familiarity with a traumatology emergency
(FamH), while the single random factor was subject (s). The model can be
described by:

Yijk = β0 + β1XTreat + β2XSeq + β3XPeriod + β4XFamA
+ β5XFamB

+ sj + εijk,
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where Yijk is the observation for the ith sequence (i = A,B,C,D), jth subject
(j = 1, 2, ..., ni), and kth period (j = 1, 2). sj is a random subject effect term
and is assumed to be normal iid, and εijk is the error term and is assumed
to be normal iid. The assumption for using an LME model is that the resid-
uals for the dependent variable are normally distributed, which was verified
via the Shapiro-Wilk test. Residuals conformed to a normal distribution for
both effectiveness (p=0.0056) and effort (p=0.0000). The data for efficiency
were transformed via a common logarithm [49], which resulted in a normal
distribution of its residuals (p=0.0042).

Table 6 Summary of p-values for the ANOVA for each dependent variable.

Variable Treat Seq Period FamB FamH

Effectiveness 0.3415 0.6078 0.0710 0.8898 0.1767
Effort 0.0010 0.6254 0.0000 0.5202 0.1395
Efficiency 0.0249 0.6880 0.0003 0.5944 0.0606

Results of the tests of fixed effects are shown in Table 6. As the table
shows, the experiment provided no significant evidence for rejecting that the
treatment had no effect on effectiveness (p>0.05). This would indicate that a
case model that uses our proposal allows users to convey information in a way
that interpretation effectiveness does not vary from case models built using
the fCM-language. On the other hand, results provided significant evidence
for rejecting that the treatment had no effect on effort (p<0.05) and efficiency
(p<0.05). This means that reading case models that use the proposed extension
reduces interpretation effort and, altogether, improves interpretation efficiency.
Regarding the remaining fixed factors, the tests reported in Table 6 show:

– Sequence had no significant effect on effectiveness (p>0.05), effort (p>0.05),
nor efficiency (p>0.05).

– Period was significantly affecting effort (p<0.05) and efficiency (p<0.05)
but not effectiveness (p>0.05).

– Familiarity (either with business trip or traumatology emergency) had no
significant effect over any analyzed aspect of model interpretation (p>0.05).

Available
information

Negative
aspects

Positive 
aspects

Previous
knowledge Fragments Scalability Visuals

User
experience Language

Available
information

Fig. 6 Common portion of the affinity diagrams.
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5.4 Qualitative Analysis

We used the affinity diagramming technique [28] for analyzing open-ended
questions of the questionnaire (items 23-25 of Table 5). Affinity diagramming
is used for organizing large amounts of unstructured, far-ranging, and seem-
ingly dissimilar qualitative data [18]. The goal of the technique is to build a
hierarchy in which each level corresponds to a (sub)category of relevant in-
formation. The resulting hierarchy can be graphically depicted as an affinity
diagram, where nodes represent categories identified from the qualitative data,
and the arcs represent hierarchical relations between the categories. Our aim
for using affinity diagramming was to build an affinity diagram for structuring
qualitative data gathered for each treatment of the experiment, i.e. data from
open-ended questions of the survey. Fig. 6 shows the firsts levels of the affinity
diagram, which was common for both treatments. In the following level, the
affinity diagrams of each treatment differ, and these differences are explained
in detail later on.

In the present work, data were analyzed in Spanish: the native language
of both participants and the researchers conducting the analysis. As prepara-
tion, data were anonymized by assigning an identifier to each subject (P1, P2,
..., P44). Then, data were divided into two: those questions about the control
treatment, and those about the experimental treatment. Four of the paper
authors took part in the subsequent analysis which included creating hand-
written affinity notes, clustering them and building hierarchies (see Fig. 7), and
documenting the results. Two researchers focused on control treatment data,
and two on the experimental treatment data. Each group was composed of one
female and one male researcher, one researcher more experienced in affinity
diagramming, and one more experienced in fCM. This stage of the analysis
allowed building one affinity diagram for each treatment, and finalized with
each group presenting their affinity diagram to the other. The aforementioned
was achieved during a five-hour single session of work held in two dedicated
rooms. Afterward, one researcher consolidated the work to make common cat-
egories. As a result, two main categories were identified: user experience and
language. In the following, we describe these categories, and up to two levels
of their sub-categories. Quotes from participants (translated to English) are
included for illustrating our findings. The quotes include the participant iden-
tifier followed by a C for control treatment or an E for experimental treatment.
Since different people may have different perceptions of the same experience,
it is sometimes the case that something that is considered positive by one
participant, is considered negative by another participant. This type of data
is to be expected in an affinity diagram and it reflects the variety of human
experiences.
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Fig. 7 Affinity diagramming session.

User experience. Participants identified a number of negative and positive
issues regarding their experience in using each language. Also, they addressed
the role of previous knowledge, namely the impact of similarities with BPMN.

– Negative aspects. Negative aspects of the control treatment were difficult
to understand at first and difficult to get an overview. Some participants
claimed problems with the process goal, e.g. “[having separate fragment
models] might lead to losing focus on the goal of the process” (P16C). Yet,
more often, participants complained about not understanding the process
flow, e.g. “it is harder to grasp the process flow” (P5C). Linked to these
issues, a number of participants suggested different solutions, e.g. provid-
ing a spatial order of the fragments (P12C), using codes for naming the
fragments (P33C), providing a complementary flow diagram (P20C). On
the other hand, negative aspects for the experimental treatment include
difficult to read and difficult to follow, e.g. “it is hard to follow the flow,
it is not intuitive to read, it could be more ordered” (P2E). Difficulties in
reading the model involved the following: line-crossover, concurrence mod-
eled with logic operators, spatial distribution of the model, and process
complexity.

– Positive aspects. Positive aspects of the control treatment include visual
simplicity, easy for finding information, and efficiency. Regarding visual
simplicity, frequent adjectives for describing the models were “ordered”
(e.g. P12C) and “straightforward” (e.g. P2C). Participants pointed out
that having separate models of the fragments facilitated finding some infor-
mation about the modeled processes, particularly details about individual
fragments, e.g. “it is clear which are the requisites for executing other [frag-
ments]” (P40C). Also, modularization was perceived as an efficient way for
representing a KiP, e.g. “[it] allows to represent complex models in a sim-
ple way” (P28C). It was also mentioned that the language allowed for an
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“effective visual communication” (P8C) by not representing the KiP in an
imperative model and rather showing the flexible nature of these processes.
On the other hand, positive aspects of the experimental treatment include
easy to understand and easy to follow, e.g. “it is easy to understand and
follow” (P37E). The idea of seeing the process as a whole and being able to
identify a sequence seems to impact understandability for the better, e.g.
“it is good that fragments are related, since you can see the entire process
in a straightforward way” (P12E) and “it is simple to follow the sequence”
(P32E).

– Previous knowledge. For both treatments, the reuse of BPMN notation
elements was acknowledged “[it is] similar to BPMN” (P31E); sometimes
with a positive connotation, e.g. “it recycles BPMN elements that are fa-
miliar” (P38C).

Language. In terms of the language itself, participants referred to aspects
related to available information, fragments, scalability, and visuals.

– Available information. A small number of participants mentioned is-
sues related to the information included in the models, e.g. “too much
information in the fragment [models]” (P13C) and “although some con-
textual details allow to infer [some information], I believe [the model] does
not make them explicit” (P15E).

– Fragments. For both treatments, some participants claimed that the op-
tionality of fragments was straightforward and some claimed it was prob-
lematic. For the experimental treatment, however, many participants re-
garded optionality as being straightforward, e.g. “it is easy to see what
is optional and what is not” (P30E). A shared issue among treatments
was the lack of clarity regarding fragment repetition, e.g. “it is not clear
to me, which fragments can be executed more than once and which can-
not” (P6C). For both treatments, some participants reported being able
to understand relationships between fragments easily, e.g. “It is clear and
evident which are the pre-requisites for other activities, which makes it
easy to understand how fragments are related” (P40C); whereas others re-
ported the opposite, e.g. “I believe that the big [spatial] separation between
fragments makes it confusing for following the process flow” (P43E).

– Scalability. Participants were concerned about the issue of scalability in
both treatments, especially in the experimental treatment. They envisioned
that an increased complexity in the KiP might lead to more complex mod-
els, e.g. “I have the feeling that, in a larger model, the number of pre-
requisites will increase the number of arcs, and thus increase graphic com-
plexity of the model” (P28E).

– Visuals. This sub-category was only identified for the experimental treat-
ment. Most comments in this regard address the concrete syntax. Negative
comments include questioning the need for the pre-requisite symbol and
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stating limitations of arrows (e.g. P6E), and complaints about the size
of logic operators (e.g. P26E). On the other hand, positive comments are
concerned with appreciating the symbols of data objects and logic opera-
tors (e.g. P2E), and the differentiation of optional fragments (e.g. P9E). It
was also mentioned that “[the experimental treatment] has less distracting
factors” (P28E).

5.5 Discussion

A number of participants of the experiment shared the opinion that fCM case
models support a representation of a KiP that is true to their flexible essence.
This backs up the fCM approach as a tool for supporting the modeling of KiP.
However, also many participants suggested having another artifact (e.g. flow
model or index) or mechanism (e.g. fragment coding) that would somehow
be a complement of the fCM case model and/or provide an overview of the
KiP. This evidence supports the idea that the fCM approach also has room
for improvement, as experienced in [21]. In this regard, an fCML comes to fill
a need grounded on empirical evidence.
Quantitative results of our experiment indicate that an fCML maintains the
interpretation effectiveness and improves the interpretation efficiency with re-
spect to its equivalent fCM case model. Due to its design, an fCML is a more
abstract model and, thus, some information of its equivalent fCM case model is
purposeful omitted, e.g. details about fragments. Consequently, the aforemen-
tioned findings, are valid only regarding information available in both model
kinds. Altogether, quantitative findings support that our proposal improves
the interpretation performance of case models within the previously stated
limitations. Quantitative results offer some orientation for the reasons behind
the obtained quantitative results.
An aspect that might explain the improved effectiveness of fCMLs is the pos-
itive perception of some participants regarding their sequence-flow represen-
tation of a KiP. Although an imperative model of a KiP carries along some
limitations (to be discussed in the following), the subjects claimed to be more
familiar with these types of process models. In the same direction, it was also
mentioned that a positive feature of fCMLs is that it facilitates seeing the pro-
cess as a whole. This might be attributed to having all fCM fragment models
and goal state consolidated in a single model.
As highlighted by the participants, the proposed extension of the fCM-language
allows depicting some information about the process in a more straightforward
way. For example, its notation supports the differentiation of (non)optional
fragments by the (non)dotted borderline of the fragment symbol. In contrast,
fragment optionality is not directly available in an fCM case model, but rather
requires reading all fragment models, raising the cognitive effort. Mechanisms
that allow readers to obtain information in a more straightforward manner,
might play a key role in reducing interpretation effort and are thus desirable
in abstract models.
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Regardless of the results of the experiment regarding interpretation perfor-
mance, participants reported mixed perceptions for ease/difficulty of under-
standing and following the different model types and the thereof contained
fragment relations. These perceptions can be rooted in model quality issues.
On one hand, collapsing fragment models (from an fCM case model) into a sin-
gle symbol (in an fCML), would reduce model complexity because of reducing
the number of nodes as discussed by Mendling et al. [34]. But this might not
be always the case. In fact, some participants claimed to have difficulties with
the simultaneous representation of the alternative flows in fCMLs. Since KiPs
allow for many possible execution traces, an imperative model can rapidly in-
crease in complexity as a consequence of the increased number of logic operator
nodes. Also, a larger amount of logic operator nodes carries an increase in the
number of arcs, which might also lead to undesired line cross-overs. The con-
cern of model scalability emerged for both model kinds, but more frequently
regarding fCMLs. This can be attributed to the negative relationship between
the degree of a node (i.e. total number of incoming and outcoming arcs) and
model understandability as discussed by Mendling et al. [33]. Aspects of the
position of the elements and layout, in general, were also mentioned as im-
pacting model readability: these are parameters that have been discussed in
the literature of model quality, cf. [25].

5.6 Threats to Validity

We are mindful that our study has some strengths and also some limitations.
First, we will discuss validity threats related to experimental subjects. While
students are a model of the context, we claim that the subjects of the exper-
iment represent the original context to some extent [23] due to their current
enrollment in a Process Modeling course. However, and as it has been pointed
out in Sect. 5.2, most subjects had no previous background on CM. This con-
stitutes a bias of the experiment, since subjects might have the tendency to
prefer procedural representations of processes. An alternative for overcoming
these limitations in future work would be providing a more extensive tutorial
on CM prior to the experiment.
Second, we discuss validity threats related to experimental design. We decided
to use a crossover design because differences between people might lead to
large variability when applying a given technique [49]. Crossover designs ac-
count for this by using each subject as its own control.
Though we took a number of measures to avoid period-related threats, the
data revealed an effect of the period over interpretation effort and efficiency,
as shown in Sect. 5.3. We used two experimental objects to prevent the object
learning effect threat that might have resulted if the same process was used in
both treatments. Also, we avoided the threat of technique learning effect by
asking each subject to apply each treatment only once. We were also able to
avoid copying and history threats due to the experimental setup. Regarding
the threat of fatigue effect, we decided to tackle it by matching the experiment
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session with a Process Modeling class of the subjects. However, the lack of a
pause between periods might have led subjects to become tired and/or bored,
influencing the results to some extent.
As discussed in Sect. 5.3, the sequence had no significant effect on the an-
alyzed aspects of model interpretation, which allowed to discard having an
optimal-sequence threat. Similarly, familiarity with the KiP had no significant
effect on the analyzed aspects of model interpretation, discarding that prior
knowledge of the participants played a role in the results of the experiment. An
inherent validity threat of a crossover design is carryover, which occurs when a
treatment is administered before the effect of a prior treatment has completely
receded [49]. However, we infer that neither carryover nor period*treatment
interaction influenced the analyzed aspects of model interpretation, since se-
quence – innocuous as previously discussed – is intrinsically confounded with
carryover and the period*treatment interaction in our experiment.
Finally, we would like to discuss the strengths and limitations of the qualita-
tive data analysis, namely the affinity diagramming. An inherent limitation of
affinity diagrams lies in not being fully reproducible due to the subjectivity of
researchers in grouping affinity notes and defining categories. A benefit of the
technique – versus, e.g., the use of spreadsheets – is that researchers are able
to analyze data jointly, leading to counterbalance for individual subjectivity.
A challenge linked to the aforementioned, however, is the need to build bal-
anced groups of researchers, which is the reason why we worked in the pairs
described in Sect. 5.4.

6 Conclusions

This paper provided a new concept for case management by presenting a
means for modeling case model landscapes. This contribution is built upon ex-
tending the fragment-based Case Management (fCM) language. A case model
landscape (CML) gives end users an integrated, comprehensive overview of
the high-level activities and the processed data during the execution of a
knowledge-intensive process instead of the detailed case models with often
scattered information about actions and data in different models. It can be
used to get an understanding, but also to analyze case models, redesign, or
check compliance requirements. As the landscapes build upon the fCM ap-
proach, we focus on fCM landscapes (fCMLs). We tested the interpretation
performance of our proposal in an experiment with students. Results implicate
that the proposal while maintaining the effectiveness of model interpretation,
improves its efficiency. These findings should be considered within the limita-
tions discussed in Sect. 5.6. Also, we are aware that further requirements for
defining fCMLs might be identified in future work. However, the aim of this
paper was not to conduct an exhaustive search for requirements, but rather
to focus on solving the understandability of fCM case models.

The proposed fCM-language extension for CML reuses notational elements
of the two modeling standards, BPMN (Business Process Modeling and Nota-
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tion) and CMMN (Case Management Model and Notation). While this has the
advantage that it might be easier understandable by business people working
with process models, it has the risk of some minor misinterpretation which
need to be further tested.

Our proposal addresses the fCM approach, however, we hereafter discuss
how it might be extended to other approaches. We also discuss how other ap-
proaches might enrich our work. The proposal could be also used for CMMN
models, whereby stages and their relationship could be shown on an abstract
level. CMMN represents data mainly implicitly, our language represents data
and data relations explicitly. Furthermore, the approach might be also inter-
esting for PHILharmonicFlows, another relevant case management approach,
to represent the relation between the micro processes. An important concept
for PHILharmonicFlows are the cardinalities between the generated objects.
These are only implicitly given in the proposed landscape by distinguishing
between optional and mandatory fragments, and the possibility to enable cer-
tain fragments more than once. An explicit representation might be a useful
extension.

Overall, we believe that the understandability of case models benefits from
the use of complementary models with different levels of abstraction. This
allows for distributing the inherent complexity of KiPs in views that can be
more adequate for solving specific model-related tasks. For the fCM approach,
fCM case models (focusing on the details of fragments) are complemented with
the more abstract fCMLs (focusing on the process overview). However, and as
discussed earlier, the scalability of these models is still an open challenge. In
this regard, we believe that future research might explore a dynamic visualiza-
tion of fCMLs that allows readers to select portions of the model they want to
see. Other aspects that we recommend to consider for improving case model
understandability is making use of familiar notation – such as reuse of BPMN
concrete syntax – and structures – such as workflow patterns. Additionally,
future work could consider additional techniques for assessing the model un-
derstandability, such as measures of mental effort, e.g., with the help of eye
trackers as suggested by [50].
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Appendix

In the following, Fig. 8 to 11 show the models used in the experiment.
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Fig. 8 fCM case model for traumatology emergency.
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Fig. 9 fCML for traumatology emergency.

Fig. 10 fCM case model for organization of a business trip.

Fig. 11 fCML for organization of a business trip.


