A real-world approach to motivate students on the first class
of a computer science course

ALESSIO BELLINO, Facultad de Ingenieria y Ciencias, Escuela de Informatica y Telecomunicaciones,
Universidad Diego Portales, Chile

VALERIA HERSKOVIC, MICHAEL HUND, and JORGE MUNOZ-GAMA, Department of
Computer Science, Pontificia Universidad Catélica de Chile, Chile

A common belief among students is that computing is a boring subject that lacks a connection to the real world.
The first class (one 80-minute session) in an introductory computer science course may be an appropriate
instance to combat such a belief. Previous studies have used course-wide interventions, e.g. games and
physical/tangible devices to improve students’ motivation. However, although other approaches help motivate
students, they may lack real world context or have a high cost of deployment. This paper proposes a novel
real-world based approach to introduce programming concepts in the first class of the introductory computer
science course. This approach, called Protobject-based, is applicable to courses with over 100 students, has a
low deployment entry barrier, requires low investment and may be used creatively to implement different
experiences. Furthermore, the Protobject-based approach has an equivalent motivational effect - at least in the
short-term - to a Game-based approach even if it is entirely focused on the real world. The low requirements
of the approach make it especially suitable for an 80-minute first class in an introductory computer science
course. The Protobject-based approach has been preliminarily validated and compared to a pure game-based
approach with a study with 376 participants, and we present the analysis of motivation questionnaires, a
pre-test and post-test, and a homework assignment given to the students. We posit that more research into
initiatives such as this one - that can show students how computer science can impact the real world around
them - is warranted.

CCS Concepts: « Social and professional topics — Computational science and engineering education.
Additional Key Words and Phrases: cs1

ACM Reference Format:

Alessio Bellino, Valeria Herskovic, Michael Hund, and Jorge Munoz-Gama. 2021. A real-world approach to
motivate students on the first class of a computer science course. ACM Trans. Comput. Educ. 1, 1, Article 1
(January 2021), 24 pages. https://doi.org/10.1145/3445982

1 INTRODUCTION

Many students believe computing to be “boring, solitary, and lacking real-world context” [50].
To change this perception, students need to be motivated adequately from the first introductory
course to programming. Several approaches have been proposed to improve students’ motivation
indntroductory computer science (CSO and CSI) courses, e.g.: game design and development

Authors’ addresses: Alessio Bellino, alessio.bellino@udp.cl, Facultad de Ingenieria y Ciencias, Escuela de Informatica y
Telecomunicaciones, Universidad Diego Portales, Santiago, Chile; Valeria Herskovic, vherskov@ing.puc.cl; Michael Hund,
mahund@uc.cl; Jorge Munoz-Gama, jmun@uc.cl, Department of Computer Science, Pontificia Universidad Catélica de
Chile, Santiago, Chile.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1946-6226/2021/1-ART1 $15.00

https://doi.org/10.1145/3445982

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3445982
https://doi.org/10.1145/3445982

1:2

(e.g. [14, 23]), programmable physical/tangible tools (e.g. [14, 28]), media computation [44]/media
scripting [38], data science [12], music, robotics, security [49], art and creative coding [16], and
web development [41]. Some approaches to teaching computational thinking or programming at
the university level do not change the content of the course but rather its methodology, introducing
e.g. pair programming, collaboration, gamification, or a change in grading [44]. Most interventions
can improve students’ passing rates by approximately one third [44]. Nevertheless, although these
approaches may motivate students to learn programming, it can be argued that most of them are
not effective to motivate students with the impact programming can make on the real world.

Programmable physical/tangible tools offer “a positive, exciting, and productive learning experi-
ence” [15], especially targeting real-world aspects. Nevertheless, an effective deployment of a first
class based on such paradigm could be remarkably challenging: components need to be assembled
and programmed and this requires a time frame usually longer that a single class, especially if
instructors aim to demonstrate the impact of programming in the real world. Moreover, such tools
may be not accessible/available in some educational contexts (e.g., budget problems).

To address the aforementioned drawbacks, we propose a novel approach for introducing pro-
gramming concepts during a single introductory class (i.e., the first class of a course, in our case, 80
minutes long), designed to specifically maximize real-world experience with a low implementation
cost. The approach is based on the building of interactive systems by leveraging common objects
(e.g., when someone sits on their reading chair, the overhead light will turn on) using a common
smartphone and intuitive software. Our approach is based on the use of (1) Protobject, a light,
flexible and versatile prototyping tool able to sense interactions with objects by using just a smart
phone and (2) IFTTT (“if this then that”), a free web-based service to create simple conditional
rules.

The aim of this paper is to present this new approach, which we call Protobject-based, comparing
it with a more traditional Game-based approach. Our proposal is used to introduce programming
concepts in the first class of an introductory programming course. The study involved 376 students,
including the analysis of pre-tests, post-tests, questionnaires regarding motivation, and a homework
assignment. The experiment was performed in two sections simultaneously, with two professors
with similar teaching evaluations, in two consecutive semesters, alternating the approach used for
each professor. Our results shows that, at least in the short-term, the Protobject-based approach
improves students™ attitude regarding the relationship between programming and real life when
compared to the Game-based approach, while preserving a similar general motivational power.
Considering, moreover, that our real-world-based approach is flexible (allowing instructors to tailor
examples according to available items), that the resulting demonstrations are short enough to be
used in‘a 80-minute class, and that it requires a small effort to be implemented (gathering everyday
objects, and preparing the demonstrations), it may be a suitable alternative to use for introducing
the first programming concepts when compared to alternative programmable physical/tangible
approaches. Naturally, further work is needed to ascertain whether these effects can be sustained
over time.

This paper is organized as follows. In Section 2, we present the context in which the study was
carried out. Section 3 presents the related work, and Section 4 presents our proposal. Section 5
presents the comparison between both approaches; in Section 6 we present the results of this
comparison; in Section 7, we discuss our results; and finally, Section 8 discusses some limitations
and Section 9 our conclusions.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:3

2 PROGRA: AN INTRODUCTORY COMPUTER SCIENCE COURSE FOR
ENGINEERING STUDENTS

Pontificia Universidad Catdlica (UC) is a well-ranked university [1] located in Chile. The university
has over 26,000 undergraduate students, each of whom, when entering the university, applies to a
specific program (e.g. medicine, engineering, law, primary education, etc). Within the Engineering
study program, Computer Science is one of the possible majors (and professional titles) students
can select. Only one of these programs (called college) is similar to international college programs
in which students take 2 or 4 years of courses from several disciplines. In the case of this particular
university, students then transition into one of the other existing programs.

The Introduction to Programming course, usually called Progra by students, is a first-year course
for all Engineering students, as well as a mandatory course for students from the astronomy,
statistics, and physics programs. Students from a few other programs, e.g. mathematics, and college,
can choose to take Progra from a short list of electives. Students from almost any other university
program can take the course as an elective, and there are therefore usually a small number of
students from other university programs such as arts, economics, or-design. This results in a course
in which most students (over 90%) are not future computer science majors.

The Progra course has around 1,300 students per year, divided into 4-5 sections in the first
semester and 7-9 in the second semester (plus one summer session). The course has two 80 minute
teaching sessions and one 160 minute lab session per week. Each section has between 100 and 130
students. The large number of students and sections has made it necessary for all the lecturers to
have one shared class schedule, in which the same contents are seen in all sections week by week.
Each lecturer is free to teach the content as they feel is best, but there is little room for divergence
in the topics that are taught.

The course is taught in the Python programming language and covers the following contents:
an introduction to algorithms, variables and expressions, if, while, functions, strings, lists, files,
object-oriented programming, search, sorting, and recursion. The first class of the course is used
to present its rules regarding methodology, evaluation, ethics expectations, among others. The
second class is used to provide an introduction into what an algorithm is, and as this is the only
class scheduled for this purpose, lecturers typically try to provide a motivational experience that
can, at the same time, teach students important concepts.

3 RELATED WORK

It is important to note that since our study focuses only on the first class, our aim is to help
students understand the potential of computer programming, as well as to motivate them. We
consider approaches for K-12 education (since our students recently came from high school, and
our programming course is not intended only for students of computer science [20]), as well as
approaches at the university level for CS0/Csl1.

To present the related work, we first introduce programming languages that have been used to
teach introductory programming, and then we discuss teaching approaches used by instructors that
have a real-world focus, which includes initiatives at high school and university level (CS0/CS1).
Then, we introduce Protobject, IFTTT - which is used to trigger actions according to Protobject
detection - and discuss our approach in relation to the previous works.

3.1 Programming languages

To introduce programming or computational thinking concepts, researchers have mostly used
textual, visual, or tangible programming languages (or combinations thereof). Computational
thinking can even be taught without a programming language. For example, at Virginia Tech, a

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4

Computational Thinking for Computer Science (CT4CS) course - that did not use programming
languages at all - was implemented to show students that computer science is not “just programming”
[19]. Another such initiative for CS0 used stories instead of code to explain computational concepts
[36]. This section briefly describes textual and tangible languages, and discusses visual languages
in more detail, as these are most closely related to our approach.

Text-based, or textual, programming languages offer a more authentic experience regarding
learning “real” programming, which can be motivating for some students, although their use may
be more challenging for young students as well as for their teachers [15]. One such approach is
the Logo programming language, which has a reduced set of instructions specifically created for
teaching programming in schools [14]. At the university level, textual languages are generally
used. One study compared Python versus C for an introductory programming course, finding that
Python generally yielded better student outcomes than C [45].

Tangible languages are enjoyable and easier to use for younger children [15]. An experiment
using a tangible programming language called Tern, that consists of connectable wooden blocks,
found that tangible languages are better suited for whole-class activities and motivating children,
while graphical interfaces were better for small-group activities [17]. Another such experience
with a robot programming platform called PROTEAS with 28 commands and 16 parameters, in the
form of connectable cubes, found the tangible version especially suited for younger children and
girls [40].

Most studies for K-12 have used visual programming languages, which have been found to be
engaging and support learning key concepts [15]. Visual approaches have also been used for CS1
courses, improving pass rates, perhaps because simplifying syntax can help students at risk of
failing [44].

Block-based programming languages such as Scratch and Alice are two popular and widely used
visual languages, which also have large online communities that provide learners with support
from others [18]. Scratch 2.0 even allows users to create projects that use the computer webcam as a
sensor [35]. One two-week intervention in a CS1 using Scratch was found to be useful for novices to
learn basic programming concepts and eased the transition to a text-based programming language
[30]. Another visual programming tool, App Inventor for Android, is especially engaging for teens
as it allows them to create applications for their mobile devices [35]. Blockly Games is another
popular block-based programming language, available via a browser. Block-based languages have
been found to help later on learn a textual language, and their success may stem from how they
address three barriers to learning a programming language, since (1) blocks rely on recognition
instead of recall, (2) blocks allow organizing code into chunks, reducing the need for punctuation,
and (3) blocks provide constrained direct manipulation, helping users avoid errors [7].

Event-driven programming, introduced through a graphical interface early in a first computer
science course, was found to be effective and natural for university students in a CS1 course [10].

3.2 Teaching computational thinking with a real-world focus

Among the three main reasons for leaving a computer science major, students at Georgia Tech
described not seeing a “relevant connection to the real world” [9]. The CT4CS course at Virginia
Tech introduced concepts such as concurrency, with students stating that one of the reasons they
found this topic interesting was that it dealt with “real life or practical situations” [19]. At Cal
Poly, the CS0 course is especially focused on showing students how computers can help solve
real-world problems [49]. This course allows students to choose an application domain of their
interest - e.g. robotics, computational art, security, music [49]. No matter what the specific topic
chosen by students, students have had improved grades and pass rates in subsequent computer
science courses after taking this course [49].

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:5

In learning computational thinking, students should be building programs about things that
“matter to them”, which in many cases translates to courses based on games or digital stories
[25]. Games in particular have been widely used, e.g. through platforms such as Alice, Greenfoot,
Pex4Fun and Hour of Code [14]. Students may share the games they develop with their families and
friends, which creates a sense of ownership and stimulates students to want to learn more about
programming [37]. Some initiatives, e.g. RoboCode, have also introduced a competitive aspect into
the game [31].

Robotics have also been used to bridge the gap between programming and the real world. One
such initiative is the use of Lego Mindstorms, which are a powerful, non-intimidating tool to
introduce programming concepts to novices, allowing students to observe robots interact with the
real world [14]. Students (12 and 13 years old) who used Lego Mindstorms as a target platform
(with a visual programming language) to learn programming had more positive emotions than
those who used a desktop computer, without consequence to how much they learned [28].

Other initiatives have sought to teach Arduino, e.g. one 8-hour long student-led seminar taught
students programming through four mini-projects: a light-emitting diode (LED) flasher, creating
colors using red, green and blue LEDs, dimming a LED, and turning a LED on/off with a light-
dependent resistor [26]. Such a seminar requires Arduino components (hopefully, a large number to
allow students to creatively build their own projects), which requires a large budget when teaching
many students. Similarly, other initiatives have used a Raspberry Pi as an introductory domain of
work [32]. One such initiative at a CS0 course sought to allow students to learn by doing as well as
understand the impact of computing and its consequences [21].

At a university level, several initiatives have sought to ground CS0/CS1 courses in a domain that
is relatable to students, to improve their understanding of the material. For example, some CS1
courses have turned to media computation or game themes [44].

4 PROTOBJECT: USING A RAPID PROTOTYPING TOOL TO INTRODUCE
PROGRAMMING CONCEPTS

Protobject [8] is a rapid prototyping tool that enables observation of the states of any stationary
object (e.g. home appliances, doors, lights, windows, curtains, umbrella stands) as input for proto-
typing and testing smart systems. In many cases, Protobject can be used to sense users’ interactions
with objects. In fact, some interactions can be detected by recognizing changes of object states: for
example, the action of closing a door (interaction) changes its state from “open” to “closed”; the
action of taking an umbrella (interaction) from a stand changes its state from “umbrella present”
to “umbrella absent”. Protobject is designed to exploit state changes for triggering actions. For
example, when somebody picks up the phone receiver answering a call (state change), Skype status
changes automatically to “busy” (triggered event).

4.1 How Protobject works

Protobject works as a multipurpose camera-based sensor and is able to recognize visually observable
properties of any stationary object using computer vision techniques. Protobject is composed of an
app for Android - which works as a Wi-Fi camera - and an application for a personal computer -
which receives and recognizes images.

Key features of Protobject are listed below.

e Protobject is able to sense objects without altering them or their surrounding environments;
hence it is flexible and easily adaptable to changes.

e Protobject supports visual training sessions to let designers visually define the regions of
interest in the captured images and take snapshots of those regions to teach the system what

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6

states have to be detected and what events are associated with them. At run time, Protobject
can match the camera live stream against the stored images of states to detect the current
state and trigger the associated events.

e Protobject supports the detection of multi-value discrete states, either multi-value (e.g., closed-
door/slightly-open-door/half-open-door/open-door), or binary (e.g., open/close, present/absent).
Continuous state changes (e.g. the rotation degree of a knob) can be detected by adding
physical markers on the observed objects (e.g., a multicolour band around the knob).

4.1.1 Smartphone App. The smartphone app turns an Android smartphone into a Wi-Fi camera
that sends a video stream in M-JPEG format to the desktop app through the IP address displayed
on the screen (Fig. 1).

@ untitled - Protobject
=) (o h re 7
O O w08 e Moo
ecagnition Chgose camera IP

Desktop app

Fig. 1. A smartphone turned into a Wi-Fi camera that displays the IP address to connect.

4.1.2 Desktop App. Protobject desktop app works in design and detection mode. The design mode
lets users define and record the possible states of involved objects to build a database of states. The
detection mode lets Protobject detect the current state of an object and its state changes.

The design mode lets users visually create regions by semi-transparent rectangles around the
target objects (e.g., heater and window in Figure 2 - label 1 and 2); assign a name to each region
in the associated panel (e.g., "Window" - label 3); and record the states to be detected by taking
snapshots of objects in the desired states by the camera-button (e.g., label 4 in Figure 2). Pictures of
the captured states are reported on the right (e.g., window closed and open - labels 5 and 6), and
a name is given to each of them by typing a string in the field next to pictures (e.g. "Closed" and
"Open" - label 7 and 8). When a new object is created and states are defined, they can be saved
in a JSON file in ptj format (*.ptj), which records name, position and size of regions along with
pictures of associated states. Saved objects can be loaded, modified and stored again to modify the
prototype under development.

In detection mode, Protobject starts monitoring the selected scene, and for each region the
real-time state is displayed by showing the name associated with it (e.g., label 1 and 2 in Figure 3),
and a similarity index (the number displayed with green background) that measures the similarity
between the current image and the recorded images. The displayed value is computed using a linear
combination of Pearson correlation among RGB components [10] and cosine similarity among HoG
descriptors of the images. States are refreshed with a frequency that can be visually selected by a
sliding cursor (label 3 in Figure 3). Protobject can send event messages with the detected states to
trigger actions in external components by WebSocket channels that can be enabled on the control
panel (label 4 in Figure 3).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:7

4.2 Motivation for its use

Protobject can be used to build working prototypes in a short amount of time and we believe it
can be used in programming lessons to show how programming can be useful in everyday life by
adding interactive behaviour to common objects. Protobject deliberately uses a ‘low tech’ approach
by leveraging widely available resources, e.g. smartphones, low skill requirements and existing
objects to be reinvented and reused.

43 IFTTT

If This Then That (IFTTT) is a free web-based service that allows users to link services through
simple conditional statements called applets. Applets are triggered by a change in one service (e.g.
receiving a notification) and can perform actions in another service (e.g. turn on a relay switch).
Protobject is one such service, which can be connected with IFTTT using the maker webhook
channel (https://ifttt.com/maker).

4.4 Discussion of the related work in relation to our approach

In regard to programming tools, we use Blockly, a state-of-the art visual programming language
in which we integrated a few custom additional components to allow the definition of interactive
behaviour leveraging Protobject and IFTTT (Fig. 4). We also added a Log window to show messages
and let users understand what is going on.

Our approach mostly resembles the teaching context of tangible construction kits (like Arduino),
but may be more flexible, adaptable and accessible, since it just requires a standard computer and
a smartphone. Broadly speaking, we propose that Protobject can be used for introducing basic
programming concepts focusing on real-world problems because its low setup requirements allow
it to be used on-the-fly in a short time frame (an 80-minute class).

4.5 Theoretical framework

Our work finds its theoretical foundation in situated learning, an approach to teaching where
students are encouraged to deal with real problems in everyday life and learn from real experiences
[43]. Learning, in this way, is thus situated in everyday life and the students “construct” [13, 22]
their knowledge on the basis of real experiences.

A situated learning activity is based on some assumptions [4, 46]: first, that learning is based on
the action usually done in everyday activities; second, that knowledge is acquired in a situational
way, and transferred to similar situations; third, that learning is the result of social situations
concerning the way of thinking, perceiving reality and solving problems; and finally, that learning
is not'separated from the real world, but exists as a whole of actions and situations that occur in
everyday life.

One of the approaches used to bring situated learning into educational environments is simulation
[2], also based on case-based scenarios [2, 24]. In an analogous way, we also bring scenarios into
the classroom through the simulation of real cases (see Figures 5 and 6) where programming finds
its usefulness in everyday life.

Finally, it is worth noting that in technical contexts such as engineering, situated learning — also
through simulation — has led to an improvement in students’ motivation [11, 24].

5 METHOD
5.1 Context

Two sections, which we will call sections Game-based and Protobject-based, participated in an
experiment to compare our approach with a more traditional game-based approach (which the

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://ifttt.com/maker

1:8

° untited - Frotabject - o IEl

O¢v0 «0Ce 80

Design | Recognition

states of the area: Lamp

ﬂ Closed. @B

[Algorithm: | Auto Thresh

Design mode

Fig. 2. A screenshot in design mode. Heater (1) and window (2) are regions of interest. The window is selected,
and the associated states ("Closed" and "Open") are displayed on the right panel.

L] untited - Protobiect - ol
O 82 «00e @0

Design | Recognition

Recognition mode

Fig. 3. Snapshot of heater and window displaying their current state ("On" and "Open" respectively) in
recognition mode.

@ Blockyfor rotobject Code - o x
Blocks = B B i 3
Logic -

e

Math

Text

Lists -

S =eico G2

Variables

RS IFTTT Webhooks

L key (required)

Protobjoct [l €vent (required) 4

Fig. 4. Blockly interface with Protobject components and Log

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:9

professors had been using in previous semesters). The experiment was carried out in the first
class of the Progra course for the second semester of 2018 (which we refer to as 2018-2) and for
the first semester of 2019 (2019-1). The two sections had the same schedule (so the sessions were
simultaneous), identical classrooms, and almost the same number of enrolled students (in 2018-2,
section Game-based had 129 while section Protobject-based had 128, and in 2019-1 both had 105).
The lecturers for the two sections were both full-time faculty with similar student evaluation
ratings and who had both won teaching awards for this course. We scheduled the experiment
for the second class of each semester, after the course rules had been explained. In 2018-2, one
professor taught the Game-based session and the other the Protobject-based session, switching in
the 2019-1 semester to avoid any bias due to the professor.

A two-group pretest-posttest design was used in our experiment: we compared data from Game-
based and Protobject-based groups to evaluate the impact of Protobject in changing students’
attitudes toward programming. During the session, the two groups carried out two different classes,
as described in Table 1. It is relevant to note that we chose everyday objects (e.g. a boiler, a phone) for
the demonstration, but similar demonstrations could be achieved by using other objects, according
to availability.

switch i 3
region

Switch states

Fig. 5. The boiler prototype: The electrical boiler had a physical switch that moved when the water was
boiling. We trained Protobject to detect the two possible states (positions) of the boiler switch (on and off),
then the states could be leveraged to run the prototype (see Blockly code).

5.2 Data collection

Data was collected in each stage of the experiment.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

CEE—

JEZe0oBle OO

Phone
receiver
region

Receiver states

Dosign mado

@t
DvaZ2eoBle OO
Froquancy of rcogriton inmisecends

o
AT 0 ko 1o RO 10 18 o

]
£
£
z
H
£

freeegefe

28
o

nnnnnnnnn

Fig. 6. The phone prototype: we trained Protobject to detect the two possible states of the phone (available
and busy), then the states could be leveraged to run the prototype (see Blockly code). Note that the lamp is
connected through a Sonoff relay (which costs 5 dollars) compatible with IFTTT so that it could be triggered
bythe Blockly code.

At the beginning of the class, we asked students from both sections to fill out a questionnaire
composed of three different sections:

(1) CASF: 16 questions aimed to measure computer attitude of computer science freshmen [33],
translated by the researchers into Spanish.

(2) CS-Impact: 7 questions on a 5-point Likert scale about computing’s impact in the world,
aimed at understanding students’ perceptions about computing (Table 2).

(3) Computational-Thinking: three questions selected from a questionnaire for measuring com-
putational thinking abilities, adapted from the Spanish version [39].

At the end of the class, we asked students to fill another questionnaire composed of three sections:

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:11

(1) Today-Class: 6 questions on a 5-point Likert scale about the class they had just experienced,
aimed at measuring whether students liked the class and whether they felt they had learned
something (Table 2).

(2) CS-Impact: the same questions used in the initial questionnaire (Table 2).

(3) Computational-Thinking: similar to the one used in the beginning of the class but with
different questions. This prevented students from remembering the previously given answers.

The questions, translated into English, are shown in Table 2. The CASF and Today-Class sections
were used to compare the control and experimental groups in regard to attitude towards CS (results
in section 6.1) and satisfaction about the class (results in section 6.2). The Computational-Thinking
and CS-Impact questions were used to compare groups before (pre-test) and after (post-test) the
class (results in section 6.3).

A week after the class, we received the homework from both groups, which in the case of the
Protobject-based section were classified according to their feasibility and field of application (results
in section 6.4). Before sending the homework, participants of both groups of 2019-1 were asked to
answer four open questions that were analyzed qualitatively: The participants of the preceding
semester (2018-2) did not answer the questions. Rather, we used the preliminary results of that
semester to build the questions appropriately. The questions were the following (the Game-based
group was asked the questions in terms of Blockly, while the Protobject-based group was asked in
terms of Protobject):

(1) Considering <Blockly/Protobject>, do you believe computer science may be entertaining?

Explain your answer.

(2) Considering <Blockly/Protobject>, what do you think about the relationship between pro-
gramming and game creation? Do you think that programmers go beyond only creating
games? Explain your thoughts.

(3) Considering <Blockly/Protobject>, do you think that a similar approach could be used to
teach K-12 students? Explain why.

(4) Considering <Blockly/Protobject>, do you think that computer science could be useful for
non-experts in computing? Explain your answer.

5.3 Data analysis

5.3.1 Quantitative data. Since most of the data we collected turned out to be not normal (according
to Shapiro—Wilk test), we used non-parametric tests instead of parametric tests. We used the
Mann—Whitney U test to discover significant differences between groups (unpaired samples). Next,
we used the Wilcoxon signed-rank test to discover significant differences between pre-test and
post-test (paired samples). Since Likert responses are ordinal data, only the usage of non-parametric
tests — like the Wilcoxon signed-rank one — is appropriate. The Wilcoxon signed-rank test provides
positive and negative ranks, which let us understand how many people changed their attitude
toward higher or lower values. Note that higher positive ranks (in relation to negative ranks) do
not necessarily mean that attitude toward a concept positively improved since it depends on the
nature of the question (e.g., for inverted questions, the attitude improves when detecting a negative
ranking).

For any pre-test/post-test comparison, we also computed the effect size by dividing the Z value
of the Wilcoxon signed-rank by the square root of the number of observation using the Cohen
criteria of 0.1 = small effect, 0.3 = medium effect, 0.5 = large effect [34].

5.3.2 Qualitative data. To analyse the responses to the open questions, first, we identified the
frequency of words and groups of words used by participants for every question by using stemming
(to reduce the words to their basic form, e.g., arriving — arriv) and cluster analysis (to identify

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Table 1. Description of lesson plans and homework for both sections

Game-based

Protobject-based

e 2018-2: 103
e 2019-1:75

|Attendance|

e 2018-2: 107
e 2019-1: 91

(1) Algorithms. Brief introduction to what an algo-
rithm is.

(2) Blockly Games Demonstrations. Both professors did
their usual first class to introduce programming con-
cepts. One professor interactively discussed the plane
seat calculator demo (https://blockly-demo.appspot.
com/static/demos/plane/index.html), in which the
concept of variables and mathematical operations
is introduced. Then, they discussed and solved nine
levels of the Blockly Games Maze (https://blockly-
games.appspot.com/maze) in an interactive exercise
with the class. This excercise introduced the concepts
of instructions by having the person reach his goal
location, instruction order, cycles by repeating instruc-
tions until the person reaches the end of the maze,
and if/else by turning according to maze constraints.
The other professor interactively drew figures using
Blockly Turtle (https://blockly-games.appspot.com/
turtle), introducing the concepts of instruction order,
cycles by repeating instructions to draw a cirele, func-
tions and variables, and then solved some levels of the
Blockly Maze game to introduce the if/else concept.

Lesson Plan

(1) Algorithms. Brief introduction to what an algo-
rithm is.

(2) Blockly Games Turtle. One professor used the
Blockly Turtle game (https://blockly-games.appspot.
com/turtle) to explain the concepts of: instruction by
drawing a line, instruction order by drawing a square,
cycles by drawing a circle, and functions by drawing
rotated squares, while the other professor used the
plane seat calculator demo and Blockly Maze to intro-
duce concepts such as instructions, variables, if/else
and cycles.

(3)Protobject. Protobject was introduced as a way to
connect Blockly programming to real objects. Two
examples were built on-the-fly using Protobject and
Blockly: (1) a smart boiler that notifies users when
the water is ready (Figure 5), and (2) a system that
recognizes whether a phone is in use or not.

(4) IFTTT. We introduced if/else through IFTTT, ex-
plaining that it can be used to connect different ser-
vices depending on their state. We built a final Pro-
tobject example using IFTTT and Blockly: a do not
disturb system that turns on a lamp to signal the
busy state when receiving/answering a call on a office
phone and turns it off (signaling availability) when
the call is finished (Figure 6).

The students were invited to solve the tenth level of
the maze game and to explore the Blockly Turtle game
and hand in a drawing made through the game.

Homework

The students were invited to think of a way in which
they could use Protobject (e.g. in their home or univer-
sity), and hand it in either as a drawing and a descrip-
tive paragraph, or to implement it using Protobject
and hand in a Youtube video link.

Table 2. CS-Impact and To

day-Class questions

1 | Computer science can be fun.
. | 2 | 'mafraid I won’t do well in this course.
i 5 Programming is difficult and complex, and only a few computer
£ geeks can understand it.
8' 4 | Ibelieve computing is boring.
5 | Progammers create games and some other things.
6 | It would be possible for children to learn to program in school.
7 | Programming is only useful for a few computer experts.
1 | Iliked today’s class.
é 2 | Today’s class was not very interesting.
Q | 3 | Today’s class was confusing.
_§‘ 4 | Ifeltlike Ilearned a lot today.
2 | 5 | Today’s class was motivating.
p Ifeel that I have a better idea about what programming is after
today’s class.

ACM Trans. Comput. Educ., Vol

. 1, No. 1, Article 1. Publication date: January 2021.

https://blockly-demo.appspot.com/static/demos/plane/index.html
https://blockly-demo.appspot.com/static/demos/plane/index.html
https://blockly-games.appspot.com/maze
https://blockly-games.appspot.com/maze
https://blockly-games.appspot.com/turtle
https://blockly-games.appspot.com/turtle
https://blockly-games.appspot.com/turtle
https://blockly-games.appspot.com/turtle

A real-world approach to motivate students on the first class of a computer science course 1:13

common clusters of words, e.g., real word). We considered a word or a cluster of words to be
relevant when the frequency in the text was at least 2. We only considered clusters of two and
three words.

Next, we read the context in which these extracted words or clusters of words were used to
interpret the results. This method of analysing qualitative data is common in social science, and is
based on the assumption that although researchers have better interpretative power, the computer
has a better capability of identifying common patterns in the text (i.e., frequency of word and word
clusters) [42].

6 RESULTS
6.1 Group comparison

To analyze the CASF questionnaire, we computed the composite scores on the five factors of the
questionnaire: hardware usage anxiety, self-confidence, computer as beneficial tool, engagement
with computer, long lasting negative consequence (Figure 7). No significant differences were found
in any factors (p>0.05) using the Mann—Whitney U test. Therefore, we can state that the groups
are comparable to carry out further analyses.

CASF Questionnaire
s p =0.67

p =0.99

4 I‘
p =0.46 p =038

3 p =0.98) \ I 1 1 *1

) 4
Hardware usage Hardware usage Self-confidence Self-confidence Computer as Computeras Engagement with Engagement with Long lasting Long lasting
anxiety (G) anxiety (P) ©) ®) beneficial tool (G) beneficial tool (P) computer (G) computer (P) negative negative
consequence (G) consequence (G)

Fig. 7. Comparison of Game-based (G) and Protobject-based (P) groups regarding CASF questionnaire with
its factors. None of the differences are significant (p > 0.05) according to the Mann—Whitney U test. Error
bars denote 95% CI.

6.2 Lessons comparison (Today-Class questionnaire)

Regarding the lesson evaluations, the different items of the questionnaire measure the same
dimension (Cronbach’s Alpha: 0.77) and, therefore, we computed the composite score and carried
out the Mann=Whitney U test among the scores. Such a test (U=16688, p=0.42) suggests that there
are no significant differences among the two groups (M=4.18, SD=0.60 for Game-based; M=4.13,
SD=0.59 for Protobject-based, see Figure 8).

6.3 Pre/post test comparison (CS-Impact) and Computational-Thinking

Regarding pre/post test questions, we analyzed them using a Wilcoxon Signed-Ranked to detect
significant differences among pretests and posttests in the Game-based and Protobject-based groups.

In regard to the question “Computer science can be fun” (Figure 9), we detected significant
differences in the Protobject-based group (Z=-3.152, p=0.002, positive ranks=45, negative ranks=19)
with a small effect size (r=0.22), but not in the Game-based group (Z=-0.226, p=0.82, positive
ranks=30, negative ranks=34).

In regard to the question “I'm afraid I won’t do well in this course” (Figure 10) we detected
significant differences in both groups (Z=-4.663, p<0.001, negative ranks=66, positive ranks=15 for
the Protobject-based group, and Z=-2.636, p=0.008, negative ranks=47, positive ranks=21 for the

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Today-Class Questionnaire

5 — b= 042 |
4 I I
3
2
1
Today Class (G) Today Class (P)

Fig. 8. Comparison of Game-based (G) and Protobject-based (P) groups regarding the composite score of the
Today-Class questionnaire. The difference is not significant (p > 0.05) according to the Mann—Whitney U
test. Error bars denote 95% CI.

Computer science can be fun.

Game-based Profobject-based
Pre-test | 20 S8 93 Pre-test || a7 70 94
Post-test || 18 &7 82 Post-test | 17 68 109
0% 10% 20% 30% 40% 50% 60% 70% B0% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1l =2 3 =4 w5 ml =2 3 m4 u5
Fig. 9. Likert responses represented through stacked bars with the number of responses for each value.

Game-based group). Therefore, both groups reduced their fear with a small effect size (r=0.19) for
the Game-based group, and a medium effect size (r=0.33) for the Protobject-based group.

I'm afraid | won't do well in this course.

Game-based Protobject-based
pre-test | NZEINN 31 34 39 48 Pre-test | 35 34 47 59
Post-test | 34 42 43 31 Post-test [INNNSZIN 29 52 44 40
0% 10% 20% 30% 40% . 50%. 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W1l w2 "3 w4 m5 1l w2 =3 m4 m5

Fig. 10. Likert responses represented through stacked bars with the number of responses for each value.

In regard to the question “Programming is difficult and complex, and only a few computer
geeks can understand it” (Figure 11), we detected significant differences in both groups (Z=-
4.816, p<0.001, negative ranks=66, positive ranks=22 for the Protobject-based group, and Z=-6.166,
p<0.001, negative ranks=72, positive ranks=13 for the Game-based group) Therefore, both groups
increased their self-confidence toward programming with a large effect size (r=0.46) for the Game-
based group, and medium (r=0.34) for the Protobject-based group).

In regard to the question “I believe computing is boring” (Figure 12), we detected significant
differences in the Protobject-based group (Z=-4.441, p<0.001, positive ranks=19, negative ranks=59)
with a medium effect size (r=0.31), but not in the Game-based group (Z=-1.569, p=0.11, positive
ranks=23, negative ranks=35).

In regard to the question “Programmers create games and some other things” (Figure 13), we
detected significant differences in the Protobject-based group (Z=-4.39, p<0.001, negative ranks=65,
positive ranks=26) with a medium effect size (r=0.31), but not in the Game-based group (Z=-1.005,
p=0.31, positive ranks=27, negative ranks=33).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:15

Programming is difficult and complex, and only a few computer geeks can understand it

Game-based Profobject-based
Pre-test 67 38 23 Pre-test [75 54 16
Post-test 70 £ Postrest 7 35 8
0% 10% 20% 30% 40% S50% 60% 70% BO% 90% 100% 0% 10% 20% 30% 40% S0% 60% 70% BO0% S0% 100%
mlm2 o3 m4 w5 mlm2 3 md m5

Fig. 11. Likert responses represented through stacked bars with the number of responses for each value.

| believe computing is boring.

Game-based Protobject-based
Pre-test S 5 2 I8 Pretes: IS WA S Y@ 0
Posctest 7 005 Fosttest SIS W 50 2
0% 10% 20% 30% 40% 50% 60% 70% B0% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
mlm2 =3 md 5 ml @2 %3 W4 =5

Fig. 12. Likert responses represented through stacked bars with the number of responses for each value.

Programmers create games and seme ather things.

Game-based Profobject-based
pre-test [EEN a9 a9 32) pre-test [NEEINN 55 74 29 I8
past-test . | s a ErEn ot NI 7 55 w7
0% 10% 20% 30% 40% S50% 60% 70% BO% 90% A00% 0% 10% 20% 30% 40% S0% 60% 70% BO0% S0% 100%
1l m2 o3 md u5 ml w2 =3 md w5

Fig. 13. Likert responses represented through stacked bars with the number of responses for each value.

In regard to the question “It would be possible for children to learn to program in school” (Figure
14), we detected significant differences in both groups (Z=-4.047, p<0.001, negative ranks=14,
positive ranks=44 for the Protobject-based group, and Z=-3.066, p=0.002, negative ranks=19, positive
ranks=45 for the Game-based group) Therefore, both groups changed their attitude positively on
teaching to children with a small effect size (r=0.23) for the Game-based group, and medium (r=0.29)
for the Protobject-based group).

It would be possible for children to learn to program in school.

Game-based Protobject-based
Pre-test BN 34 71 58 Pre-test I3 2 81 73
Pos-test EEAN 26 65 78 Posttest Bl 28 69 94
0% . 10% 20% 30% 40% S0% 60% 70% E0% 90% 100% 0% 10% 20% 30% 40% S0% 60% 70% B0% S0% 100%
mlm2 =3 md 5 mlm2 -3 =4 u5

Fig. 14. Likert responses represented through stacked bars with the number of responses for each value.

In regard to the question “Programming is only useful for a few computer experts” (Figure
15), we detected significant differences in both groups (Z=-3.270, p=0.001, negative ranks=56,
positive ranks=28 for the Protobject-based group, and Z=-2.300, p=0.021, negative ranks=>50, positive
ranks=25 for the Game-based group) Therefore, both groups changed their attitude positively on
the usefulness of programming for general users with a small effect size (r=0.17 for the Game-based
group and r=0.23 for the Protobject-based group).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Programming is only useful for a few computer experts.

Game-based Protobject-based
re-test 62 1B 7 Pre-test | SE 75 19 5
Post-test | — 45 13 8 Post-test O 62 114
0% 10% 20% 30% 40% 50% 60% T0% 80% 0% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Hlm2 3 m4ms Hlm2 3 m4ms

Fig. 15. Likert responses represented through stacked bars with the number of responses for each value.

Table 3. Pre-test/Post-test comparison. The group that is in italics outperformed the other in terms of effect
size (r) by at least 0.10.

. Pre-test/Post-test comparison | Effect
Question Group . p-value
-ranks | +ranks size (r)

Computer science can be fun Game 34 30 _ 082
P Protobject | 19 G 022 0.002
G 47 21 0.19 0.008
I'm afraid I won’t do well in this course P::::Z;ject o6 T 033 0.001
Programming is difficult and complex, and Game 72 13 0.46 0.001
only a few computer geeks can understand it | Protobject | 66 22 0.34 0.001

I believe computing is borin Game . 23 _ 0.11
puting & Protobject” | 59 1 031 0.001

Programmers create games and some other Game 33 27 - 0.31
things Protobject | 65 26 0.31 0.001
It would be possible for children to learn to Game 19 45 0.23 0.002
program in school Protobject | 14 44 0.29 0.001
Programming is only useful for a few Game 50 25 0.17 0.021
computer experts Protobject | 56 28 0.23 0.001

In regard to questions aimed to check computational thinking abilities (Figure 16), both groups
significantly improved their results (Z=-3.897, p<0.001, negative ranks=24, positive ranks=57 for
the Protobject-based group, and Z=-3.996, p<0.001, negative ranks=31, positive ranks=67 for the
Game-based group) with a medium effect size (r=0.30 for the Game-based group, and r=0.27 for the
Protobject-based group).

Table 3 summarizes all the pre-test/post-test results showed in this section.

Mark pre/post-test in game-based (G) and Protobject-based (P) group

1 p=0000 ——| p=0000

2 I I

Mark Pre-test (G) Mark Post-test (G) Mark Pre-test (P) Mark Post-test (P)

Fig. 16. Marks pre/post test in both groups. All differences are significant. Error bar denotes 95 % CI.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:17

6.4 Homework submissions

Regarding the homework based on Protobject, 172 students submitted their work. Nine of them
submitted a video showing a prototype that really worked. The rest (163) submitted a drawing
where they indicated the area in which Protobject could be trained by indicating the possible states
to be recognized. Then, they “drew” the algorithm using Blockly blocks. 37 submissions were not
viable, namely, they could not be actually programmed using Protobject (e.g., send a notification
when the user is hungry). The rest (135) of the submissions were viable. Considering the viable
submissions only, students generated 55 different unique ideas. All of them used notifications (e.g.,
send a notification when a home appliance finishes its work).

In regard to the homework based on Blockly Turtle for the Game-based section, 201 students
submitted their work. Out of these, 48 were abstract drawings (lines, circles), 21 were logos (e.g.
football clubs, technology companies, the Olympic rings), 13 were faces, 13 were shapes such as
stars, flowers and rainbows, 12 were animals, and the rest were cartoon-like characters, stick figures,
objects (guitars, a cup of coffee), landscapes (e.g. a starry sky), among others.

6.5 Qualitative analysis

In this section, we present the results for each of the open questions that were asked of the students
when they turned in their homework.

6.5.1 ... do you believe computer science may be fun? Students in the Protobject-based group felt
that computer science is entertaining because it focuses on everyday life, allows to solve several
problems of daily life, offering tangible, automated solutions, and stimulating creativity in an easy
and intuitive way. Students in the Game-based group felt that computer science is entertaining
because it is fun, a game, and allows drawing, stimulating the imagination in an interactive, simple
and fun way.

6.5.2 ... what do you think about the relationship between programming and game creation? Students
in the Protobject-based group thought that programmers go far beyond games alone, creating
solutions to facilitate, automate, optimize, and solve problems in everyday life. Students in the Game-
based group also thought that programming goes far beyond games. Although they mentioned
games, other concepts such as algorithms, life, science, knowledge, business, physics, engineering,
mathematics, systems, social creativity and intelligence also emerged quite frequently.

6.5.3 ... do you think that a similar approach could be used to teach K-12 students? Students in the
Protobject-based group felt that Protobject could be used in school because it focuses on everyday
problems, proposing interactive and tangible scenarios, and is simple, intuitive and didactic. Students
in the Game-based group felt it could be used at school because it stimulates thinking in a simple
and fun way, and it is a game. They mentioned it being very useful, entertaining and attractive,
stimulating the imagination in the creation of the drawings. Students in this group expressed
abstract concepts such as mathematics, logic and thought.

6.5.4 ... do you think that computer science could be useful for non-experts in computing? Students
in the Protobject-based group thought computing may be useful for non-experts because it allows
solving everyday problems (automation, situations) in a simple and intuitive way. For students in
the Game-based group, computing is useful for non-experts because it allows achieving objectives,
helping people.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18

7 DISCUSSION
7.1 Experiment Results

Broadly speaking, it is not possible to state that one approach (Protobject- or Game-based) is better
than the other. According to the results in Figure 8, students did not express a preference, and
differences among the groups are not significant. However, according to pre-test and post-test
comparisons, we can observe how students changed their attitude toward some ideas.

In regard to the results on the “Computer science can be fun” statement, we must point out
that, despite almost 90% of the students having a very positive attitude before the treatments'(i.e.,
pre-tests with high scores, see Figure 9) (which coincides with a largely positive general perception
among students about the Progra course, and a growing interest in the computer science major
among Engineering students), ranks (provided by the Wilcoxon Signed-Ranked test) suggest that
attitudes changed positively and significantly in the Protobject-based group (45 positive changes vs
19 negative changes). Instead, attitude in the students of the Game-based groups changed slightly
negatively (30 positive changes vs 34 negative changes) although the difference is not significant.
Therefore, introducing programming using Protobject/IFTTT could be more entertaining with a
small effect size (r=0.22).

The responses to the statement “I'm afraid I won’t do well in this course” suggest that both
approaches are effective to reduce students’ fear even if with different effect size: medium in the
Protobject-based group (r=0.33) and small in the Game-based group (r=0.19). Also considering the
responses to the statement “Programming is difficult and complex, and only a few computer geeks
can understand it” suggests that both approaches are effective to increase self-confidence toward
programming even if with different effect size: large (r=0.46) for Game-based group and medium
(r=0.34) for Protobject-based group.

The responses to the statement “I believe computing is boring” show that, despite almost 90%
of the students had a very negative attitude before the treatments (i.e., the students do not agree
with the statement, see Figure 12), the attitudes changed negatively (so it should be interpreted as
a positive change according the real meaning of the question) and significantly in the Protobject-
based group (19 positive changes vs 59 negative changes). Also the attitude of the students of the
Game-based groups changed slightly negatively (23 positive changes vs 35 negative changes) but
the difference is not significant. Therefore, introducing programming using Protobject/IFTTT can
reduce the boredom of students with a medium effect size (r=0.31). This result basically coincides
with the result of the first question - where the Protobject-based approach was judged as more
entertaining.

Regarding the statement “Programmers create games and some other things”, ranks suggest that
attitude changed negatively - i.e., the students do not agree with the statement, so it should be
interpreted as a positive change - in the Protobject-based group (65 negative changes vs 26 positive
changes) but not in the Game-based group, where the distribution remained almost unchanged (33
negative changes vs 27 positive changes). The effect size is medium (r=0.31), and this result was
expected since the lesson carried out in the control group was based mostly on a game (Blockly
Maze).

The ranks of the question “It would be possible for children to learn to program in school”
suggest that the attitude changed positively for both groups with similar effect size (r=0.23 for the
Game-based group vs r=0.29 for the Protobject-based group).

Regarding the responses to the question “Programming is only useful for a few computer experts”,
ranks suggest that attitude changed negatively - i.e., the students did not agree with the statement,
so it should be interpreted as a positive change - both in the Game-based group (50 negative

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:19

changes vs 25 positive changes) and in the Protobject-based group (56 negative changes vs 28
positive changes) with a small effect size.

Moving to computational thinking abilities, both the approaches let students improve in similar
way. Finally, in most of the cases, students were able to develop their ideas (see homework)
contextualized in the real world generating many unique ideas. Moreover, it is worth to note that
even when students’ ideas were not viable using Protobject (e.g., when the user closes their eyes,
turn off the light), they were however well-situated in the real world attempting to solve a real
problem.

There was a difference in the number of submitted homeworks among both groups - however,
this may be because one group was reminded more effectively to turn in the work (e.g. in 2018-2, in
the Game-based group, more students turned in homework in this section than those who attended
the class).

The answers to our open-ended questions allowed us to better understand how the Game-based
and Protobject-based approaches impacted the students’ perceptions about computing. Although
the responses from both groups were positive, there was a marked difference for students in the
Protobject-based group, who related programming to real-world problems that they could solve.
They felt Protobject was entertaining because it stimulates thinking in real life, while Blockly
Turtle was entertaining because it is a fun game. However, even students in the Game-based group
did not believe that programming is only useful for games, showing a good grasp of the potential
of programming. When students were asked whether a similar approach could be used for K-12
students, there was a clear opposition between concrete concepts (e.g., real life, situations, tangible)
for Protobject and abstract concepts (e.g., math, physics, logic, imagination) for Blockly Turtle.
Finally, when asked whether computer science could be useful for non-experts, the semantic field
for answers in the Game-based group was quite limited, possibly suggesting that the students did
not know what to answer.

7.2 Our approach as compared to the literature

To the best of our knowledge, studies focused only on the first class - as the one we are proposing -
are not common in the area of education and computer science. One study in an Indian university
carried out a two-week intervention using Scratch, focused on improving student performance and
easing the transition to a text-based programming language, rather than on student motivation
[30].

Studies about how to best approach the first class of a university course are mixed: some
research suggests to focus on the syllabus and distributing class materials, while others suggest
other activities, among them those that aim to motivate students [3]. Studies in other areas (e.g.
psychology) have found that a first class may have a positive impact in terms of motivation and
interest of students [27, 47], and this is potentially true in other areas such as computer science.
Therefore, we believe that studying the first class is of considerable interest especially when trying
to evaluate and understand the motivational aspect of students who approach computer science for
the first time. In addition, our results show that student attitude towards programming has clearly
moved towards the real world and the resolution of concrete problems. As previously discussed,
some course-wide initiatives have been proposed in which CS0/CS1 courses have a real-world
focus (e.g. [49]), or in which students specifically comment that they appreciated understanding
computing in the context of real problems (e.g. [19]). Therefore, even if the effect in the mid or long
term may be questionable, this change of attitude - evident immediately after the first class - may
contribute to encourage the right development of computational thinking in the frame of the real
world. On the other hand, educational research has demonstrated that focusing on problem-solving
in the real world may foster intellectual curiosity and motivation, among others [6, 48].

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20

Several studies have found students who believe computer science to be boring [5, 50]. Although
our intervention lasted only for one class, we found that the Protobject-based approach was useful
to change students’ attitude. As matter of fact, the Protobject-based group changed perceptions
positively regarding computer science being fun and not boring.

One of the reasons students have mentioned for leaving the field of computer science is its lack
of connection to the real world. One student felt that in computer science, they were being trained
to do tasks, while their new major was “relevant to situations that occur in daily life” [9]. One of
the difficulties of first-year computer science students is understanding programming terms that
“do not have equivalents in real life” [29]. The Protobject-based approach could potentially provide
a connection to real life that students feel is missing from introductory computer science. As briefly
noted above, educators have found that a problem-solving curriculum focused in the real world
can lead to greater intellectual curiosity, motivation, a better attitude toward education, and better
performance at the university [48]. Thus, a curriculum that is designed with real-world problems
in mind may make computational thinking relevant to the lives of students and, therefore, is more
likely to keep them interested in the subject [6].

Another aspect that deserves to be discussed is the adaptability of the different approaches
considering that, on the one hand, we tried to introduce important concepts (e.g. algorithm, if-
then-else) and, on the other hand, we tried to do so with the intention of motivating students in a
limited period of time (an 80-minute class). To discuss the adaptability of different approaches to
our context we only consider their objective requirements. Our game-based approach (turtle/maze)
is definitely the most adaptable - as teachers only need a computer and an internet connection.
The Protobject approach is similarly adaptable even if it has some more requirements, namely a
smartphone and some recycled objects to bring to the scene. Other approaches based on robots and
Arduino (e.g., [14, 26, 32]) are more demanding in terms of requirements, i.e. they need components,
sensors, cables, and a prototype construction phase, and their use in a limited period of time like
that of one class is difficult. Moreover, robot-based and Arduino approaches are more expensive -
so their applicability in low-budget contexts (such as UC) is limited. Although both the Protobject
approach and the robot-and-Arduino approach have a similar focus based on the real world, it can
be said that - based on the objective requirements of each of them - the Protobject approach is
more suited to the duration of a single class while maintaining the focus on the real world.

8 LIMITATIONS

There are some limitations to this research that we would like to acknowledge.

8.1 Intervention duration

Our intervention purposefully lasted for only one 80-minute introductory session. This short
time frame is not enough to make claims about any medium or long-term effects of either experi-
ence, therefore possibly not being enough to truly change student attitudes towards computing.
Therefore, carrying out a just a one-lecture intervention, longitudinal information about student
interest/motivation are outside the scope of this study

8.2 Unconscious biases

The intervention was carried out by two professors who were a part of this research. The professors
taught the Game-based class that they usually teach for this course, and modified the class to
incorporate Protobject when it was their turn to teach the Protobject-based class. Although the
professors did not try to influence the results in any way, it is possible that unconscious biases,
phrases, or attitudes may have led them to affect study results in some way - e.g., they may have
been more nervous in the Protobject-based class about some aspect of the demonstration failing,

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A real-world approach to motivate students on the first class of a computer science course 1:21

which may have affected students’ perceptions of each class. We would like to acknowledge that
these biases, while unintentional may have affected study results.

8.3 Generalization

This experience was carried out at UC, where around 70% of Engineering students are male, and
practically all of the students are from the same country, so the results may not be generalizable to
other cultures or other populations. Furthermore, since some students are required to take this
course while others choose to take it as an elective, the participants of the session are not randomly
chosen and could not be representative of a general university population.

8.4 Questionnaire building

To evaluate psychometric dimensions using Likert responses, it is usually preferable to build several
questions to measure the same dimension and sum them up to generate a unique metric to evaluate
that dimension. In our case - to shorten the questionnaire - we used a single question to measure a
dimension. Although it could lead to lower reliability of the measurement, using a single question
to measure a specific dimension is not uncommon in human-computer studies.

9 CONCLUSIONS

This work proposes a real-world approach to introducing computer science concepts. Such an
approach may be advantageous over tangible-based approaches such as Arduino because of its
low investment and possibility of deploying in a course with a large number of students. When
comparing game-based and real-world based approaches, the real-world approach does not hinder
students’ enjoyment or understanding, proving to be a viable alternative.

Broadly speaking, a Game-based approach is not better at motivating students than a real-world-
based approach in the short-term. In fact, although both approaches are overall equivalent in
terms of students’ satisfaction (see Figure 8), the Protobject-based approach was better at changing
students’ attitudes regarding the relationship between programming and the real world. Moreover,
the Protobject-based approach did improve students’ attitudes significantly regarding computer
science being fun and not boring, whereas the Game-based approach did not. Considering our
results, we believe that more research into initiatives such as the Protobject-based approach are
warranted. Further work is also needed to understand whether effects from a motivating experience
during a first class carry over into the longer term.

ACKNOWLEDGMENTS

This work was supported in part by: CONICYT/FONDECYT (Chile) grant 1181162, Engineering
Postdoc UC 2018, and by the Departamento de Ciencia de la Computacién UC/Fond-DCC 2017-0001.

REFERENCES

[1] [n.d.]. QS World University Rankings by Region 2019. https://www.topuniversities.com/regional-rankings. Accessed:
2019-01-03.

[2] Stephen M Alessi and Stanley R Trollip. 2000. Multimedia for learning: Methods and development. Allyn & Bacon, Inc.

[3] Denise M. Anderson, Francis A. Mcguire, and Lynne Cory. 2011. The first day: it happens only
once. Teaching in Higher Education 16, 3 (2011), 293-303. https://doi.org/10.1080/13562517.2010.546526
arXiv:https://doi.org/10.1080/13562517.2010.546526

[4] John R Anderson, Lynne M Reder, and Herbert A Simon. 1996. Situated learning and education. Educational researcher
25, 4 (1996), 5-11.

[5] Neil Anderson, Colin Lankshear, Carolyn Timms, and Lyn Courtney. 2008. 4AZBecause its boring, irrelevant and I
dont like computers: Why high school girls avoid professionally-oriented ICT subjects. Computers & Education 50, 4
(2008), 1304 — 1318. https://doi.org/10.1016/j.compedu.2006.12.003

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.topuniversities.com/regional-rankings
https://doi.org/10.1080/13562517.2010.546526
http://arxiv.org/abs/https://doi.org/10.1080/13562517.2010.546526
https://doi.org/10.1016/j.compedu.2006.12.003

(6]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce Malyn-Smith, and Jason Zagami. 2016.
A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016).

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017. Learnable Programming: Blocks and
Beyond. Commun. ACM 60, 6 (May 2017), 72-80. https://doi.org/10.1145/3015455

Alessio Bellino. 2016. Protobject: a sensing tool for the rapid prototyping of UbiComp systems. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM, 257-260.

Maureen Biggers, Anne Brauer, and Tuba Yilmaz. 2008. Student Perceptions of Computer Science: A Retention Study
Comparing Graduating Seniors with Cs Leavers. In Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE '08). ACM, New York, NY, USA, 402-406. https://doi.org/10.1145/1352135.1352274

Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2001. Event-driven Programming is Simple Enough for
CS1. In Proceedings of the 6th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE
’01). ACM, New York, NY, USA, 1-4. https://doi.org/10.1145/377435.377440

Alexandre Cabral, Rolland Viau, and Denis Bédard. 1997. Situated learning and motivation strategies to improve
cognitive learning in CE. age 2 (1997), 1.

Sarah Dahlby Albright, Titus H. Klinge, and Samuel A. Rebelsky. 2018. A Functional Approach to Data Science in CS1.
In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE 4AZ18). Association for
Computing Machinery, New York, NY, USA, 10354A$1040. https://doi.org/10.1145/3159450.3159550

Thomas M Duffy and Donald] Cunningham. 1996. Constructivism: Implications for the design and delivery of
instruction. (1996).

Francisco Buitrago Florez, Rubby Casallas, Marcela Hernandez, Alejandro Reyes, Silvia Restrepo, and Giovanna
Danies. 2017. Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through Pro-
gramming. Review of Educational Research 87, 4 (2017), 834-860. https://doi.org/10.3102/0034654317710096
arXiv:https://doi.org/10.3102/0034654317710096

V. Garneli, M. N. Giannakos, and K. Chorianopoulos. 2015. Computing education in K-12 schools: A review of the
literature. In 2015 IEEE Global Engineering Education Conference (EDUCON). 543-551. https://doi.org/10.1109/EDUCON.
2015.7096023

Ira Greenberg, Deepak Kumar, and Dianna Xu. 2012. Creative Coding and Visual Portfolios for CS1. In Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE ’12). Association for Computing Machinery,
New York, NY, USA, 24751A52524 https://doi.org/10.1145/2157136.2157214

Michael S. Horn, R. Jordan Crouser, and Marina U. Bers. 2012. Tangible interaction and learning: the case for a hybrid
approach. Personal and Ubiquitous Computing 16, 4 (01 Apr 2012), 379-389. https://doi.org/10.1007/s00779-011-0404-2
Yasmin Kafai and Quinn Burke. 2013. Computer Programming Goes Back to School. Phi Delta Kappan 95 (09 2013),
61-65. https://doi.org/10.1177/003172171309500111

Dennis Kafura and Deborah Tatar. 2011. Initial Experience with a Computational Thinking Course for Computer
Science Students. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education (SIGCSE ’11).
Association for Computing Machinery, New York, NY, USA, 2512AS256. https://doi.org/10.1145/1953163.1953242
Michael Kélling and Poul Henriksen. 2005. Game Programming in Introductory Courses with Direct State Manipulation.
In Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE °05). ACM, New York, NY, USA, 59-63. https://doi.org/10.1145/1067445.1067465

Brian Krupp and Andrew Watkins. 2019. CS0: Introducing Computing with Raspberry Pis. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (SIGCSE ’19). Association for Computing Machinery, New
York, NY, USA, 83Z§.AS838. https://doi.org/10.1145/3287324.3287488

Susan M Land and Michael] Hannafin. 2000. Student-centered learning environments. Theoretical foundations of
learning environments (2000), 1-23.

Scott Leutenegger and Jeffrey Edgington. 2007. A Games First Approach to Teaching Introductory Programming.
SIGCSE Bull. 39, 1 (March 2007), 115-118. https://doi.org/10.1145/1227504.1227352

Les M Lunce. 2006. Simulations: Bringing the benefits of situated learning to the traditional classroom. Journal of
Applied Educational Technology 3, 1 (2006), 37-45.

Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior 41 (2014), 51 — 61. https://doi.org/10.1016/j.chb.
2014.09.012

Pablo Martin-Ramos, Maria Joo Lopes, M. Margarida Lima da Silva, Pedro E.B. Gomes, Pedro S. Pereira da Silva, Jos P.P.
Domingues, and Manuela Ramos Silva. 2018. Reprint of First Exposure to Arduino Through Peer-coaching. Comput.
Hum. Behav. 80, C (March 2018), 420-427. https://doi.org/10.1016/j.chb.2017.12.011

Jared] McGinley and Brett D Jones. 2014. A brief instructional intervention to increase studentsaAZ motivation on
the first day of class. Teaching of Psychology 41, 2 (2014), 158-162.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3015455
https://doi.org/10.1145/1352135.1352274
https://doi.org/10.1145/377435.377440
https://doi.org/10.1145/3159450.3159550
https://doi.org/10.3102/0034654317710096
http://arxiv.org/abs/https://doi.org/10.3102/0034654317710096
https://doi.org/10.1109/EDUCON.2015.7096023
https://doi.org/10.1109/EDUCON.2015.7096023
https://doi.org/10.1145/2157136.2157214
https://doi.org/10.1007/s00779-011-0404-2
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1145/1953163.1953242
https://doi.org/10.1145/1067445.1067465
https://doi.org/10.1145/3287324.3287488
https://doi.org/10.1145/1227504.1227352
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2017.12.011

A real-world approach to motivate students on the first class of a computer science course 1:23

[28] Alexandros Merkouris and Konstantinos Chorianopoulos. 2015. Introducing Computer Programming to Children
Through Robotic and Wearable Devices. In Proceedings of the Workshop in Primary and Secondary Computing Education
(WiPSCE ’15). ACM, New York, NY, USA, 69-72. https://doi.org/10.1145/2818314.2818342

[29] Iwona Miliszewska and Grace Tan. 2007. Befriending computer programming: A proposed approach to teaching
introductory programming. Informing Science: International Journal of an Emerging Transdiscipline 4, 1 (2007), 277-289.

[30] Shitanshu Mishra, Sudeesh Balan, Sridhar Iyer, and Sahana Murthy. 2014. Effect of a 2-Week Scratch Intervention in
CS1 on Learners with Varying Prior Knowledge. In Proceedings of the 2014 Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’14). Association for Computing Machinery, New York, NY, USA, 45&A$50.
https://doi.org/10.1145/2591708.2591733

[31] Jackie O’Kelly and J. Paul Gibson. 2006. RoboCode & Problem-based Learning: A Non-prescriptive Approach to

Teaching Programming. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer

Science Education (ITICSE "06). ACM, New York, NY, USA, 217-221. https://doi.org/10.1145/1140124.1140182

Vasileios Orfanakis and Stamatios Papadakis. 2017. Using Raspberry Pi and Wyliodrin for teaching novice programmers

in Secondary Education.

[33] G.E. Palaigeorgiou, P.D. Siozos, N.I. Konstantakis, and L.A. Tsoukalas. [n.d.]. A computer attitude scale for com-

puter science freshmen and its educational implications. Journal of Computer Assisted Learning 21, 5 ([n. d.]), 330~

342. https://doi.org/10.1111/j.1365-2729.2005.00137.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-

2729.2005.00137.x

Julie Pallant. 2013. SPSS survival manual. McGraw-Hill Education (UK).

Stamatios Papadakis, Michail Kalogiannakis, Nicholas Zaranis, and Vasileios Orfanakis. 2016. Using Scratch and

App Inventor for teaching introductory programming in secondary education. A case study. International Journal of

Technology Enhanced Learning 8, 3-4 (2016), 217-233.

[36] J. Parham-Mocello, M. Erwig, and E. Dominguez. 2019. To Code or Not to Code? Programming in Introductory CS

Courses. In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 187-191.

Rathika Rajaravivarma. 2005. A Games-based Approach for Teaching the Introductory Programming Course. SIGCSE

Bull. 37, 4 (Dec. 2005), 98-102. https://doi.org/10.1145/1113847.1113886

[38] Samuel A. Rebelsky, Janet Davis, and Jerod Weinman. 2013. Building Knowledge and Confidence with Mediascripting:

A Successful Interdisciplinary Approachto CS1. In Proceeding of the 44th ACM Technical Symposium on Computer

Science Education (SIGCSE 4AZ13). Association for Computing Machinery, New York, NY, USA, 4834AS488. https:

//doi.org/10.1145/2445196.2445342

Marcos Roman-Gonzalez, Juan Carlos Pérez-Gonzalez, and Carmen Jiménez-Fernandez. 2015. Test de pensamiento

computacional: disefio y psicometria general. In III Congreso Internacional sobre Aprendizaje, Innovacion y Competitividad

(CINAIC 2015).

Theodosios Sapounidis and Stavros Demetriadis. 2013. Tangible Versus Graphical User Interfaces for Robot Pro-

gramming: Exploring Cross-age Children’s Preferences. Personal Ubiquitous Comput. 17, 8 (Dec. 2013), 1775-1786.

https://doi.org/10.1007/s00779-013-0641-7

Stephen Schaub. 2009. Teaching CS1 with Web Applications and Test-Driven Development. SIGCSE Bull. 41, 2 (June

2009), 1132AS117. https://doi.org/10.1145/1595453.1595487

Christina Silver and Ann Lewins. 2014. Using software in qualitative research: A step-by-step guide. Sage.

David Stein. 1998. Situated learning in adult education. ERIC Clearinghouse on Adult, Career, and Vocational Education,

Center on dAe.

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A Systematic Review of Approaches for Teaching

Introductory Programming and Their Influence on Success. In Proceedings of the Tenth Annual Conference on Interna-

tional Computing Education Research (ICER °14). Association for Computing Machinery, New York, NY, USA, 194A$26.

https://doi.org/10.1145/2632320.2632349

[45] Jacques Wainer and Eduardo C. Xavier. 2018. A Controlled Experiment on Python vs C for an Introductory Programming
Course: Students’ Outcomes. ACM Trans. Comput. Educ. 18, 3, Article 12 (Aug. 2018), 16 pages. https:
//doi.org/10.1145/3152894

[46] Arthur L Wilson. 1993. The promise of situated cognition. New directions for adult and continuing education 1993, 57
(1993), 71-79.

[47] Janie H Wilson and Shauna B Wilson. 2007. Methods and techniques: The first day of class affects student motivation:
An experimental study. Teaching of Psychology 34, 4 (2007), 226-230.

[48] Pat Wolfe and Ron Brandt. 1998. What Do We Know from Brain Research?. Educational Leadership 56, 3 (1998), 8—13.

[49] Zoé J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith, Michael Haungs, Julie Workman, John
Bellardo, and Bruce DeBruhl. 2018. Mixed Approaches to CS0: Exploring Topic and Pedagogy Variance after Six Years
of CS0. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18). Association
for Computing Machinery, New York, NY, USA, 204AS25. https://doi.org/10.1145/3159450.3159592

[32

—

[34
[35

—_

[37

—

[39

—

[40

—

(41

—

[42
[43

—_

[44

—

—

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2818314.2818342
https://doi.org/10.1145/2591708.2591733
https://doi.org/10.1145/1140124.1140182
https://doi.org/10.1111/j.1365-2729.2005.00137.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2729.2005.00137.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2729.2005.00137.x
https://doi.org/10.1145/1113847.1113886
https://doi.org/10.1145/2445196.2445342
https://doi.org/10.1145/2445196.2445342
https://doi.org/10.1007/s00779-013-0641-7
https://doi.org/10.1145/1595453.1595487
https://doi.org/10.1145/2632320.2632349
https://doi.org/10.1145/3152894
https://doi.org/10.1145/3152894
https://doi.org/10.1145/3159450.3159592

[50] Sarita Yardi and Amy Bruckman. 2007. What is Computing?: Bridging the Gap Between Teenagers’ Perceptions and
Graduate Students’ Experiences. In Proceedings of the Third International Workshop on Computing Education Research
(ICER °07). ACM, New York, NY, USA, 39-50. https://doi.org/10.1145/1288580.1288586

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/1288580.1288586

	Abstract
	1 Introduction
	2 Progra: An introductory Computer Science course for Engineering Students
	3 Related Work
	3.1 Programming languages
	3.2 Teaching computational thinking with a real-world focus

	4 Protobject: Using a rapid prototyping tool to introduce programming concepts
	4.1 How Protobject works
	4.2 Motivation for its use
	4.3 IFTTT
	4.4 Discussion of the related work in relation to our approach
	4.5 Theoretical framework

	5 Method
	5.1 Context
	5.2 Data collection
	5.3 Data analysis

	6 Results
	6.1 Group comparison
	6.2 Lessons comparison (Today-Class questionnaire)
	6.3 Pre/post test comparison (CS-Impact) and Computational-Thinking
	6.4 Homework submissions
	6.5 Qualitative analysis

	7 Discussion
	7.1 Experiment Results
	7.2 Our approach as compared to the literature

	8 Limitations
	8.1 Intervention duration
	8.2 Unconscious biases
	8.3 Generalization
	8.4 Questionnaire building

	9 Conclusions
	Acknowledgments
	References

