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Abstract 

 

Background: Procedural skills are key to good clinical results, and training in them 

involves a significant amount of resources. Control-flow analysis (i.e., the order in 

which a process is performed) can provide new information for those who train and 

plan procedural training. 

 



Aims: This study outlines the steps required for control-flow analysis using process 

mining techniques in training in an ultrasound-guided internal jugular central venous 

catheter placement using a simulation. 

 

Method: A reference process model was defined through a Delphi study, and 

execution data (event logs) were collected from video recordings from pre-training 

(PRE), post-training (POST) and expert (EXP) procedure executions. The analysis 

was performed to outline differences between the model and executions. We analysed 

Rework (activity repetition), Alignment-Based Fitness (conformance with the ideal 

model) and Trace Alignment Analysis (visual ordering pattern similarities).  

 

Results: Expert executions do not present repetition of activities (Rework). The POST 

rework is lower than the PRE, concentrated in the steps of the venous puncture and 

guidewire placement. The adjustment to the ideal model measure as Alignment-Based 

Fitness, expressed as a median (25-75 percentile) of PRE 0.74 (0.68-0.78) is less than 

POST 0.82 (0.76-0.86) and EXP 0.87 (0.82-0.87). There are no significant differences 

between POST and EXP. The graphic analysis of alignment and executions shows a 

progressive increase in order from PRE to EXP executions. 

 

Conclusion: Process mining analysis is able to pinpoint more difficult steps, assess 

the concordance between reference mode and executions, and identify control-flow 

patterns in procedural training courses.  

 

Introduction 

 

The development of procedural skills is an essential component of the process of 

training medical doctors from surgical and non-surgical specialties. Superior technical 

performance positively affects patient outcomes [1]. Conversely, the presence of 

technical deficiencies is the most important factor associated with operator errors in 

hospitalized patients [2]. Simulation as a procedural teaching tool has proven to be 

effective to enable doctors to reach an adequate level, prior to contact with patients 

[3] and reduce complications associated with procedures [4],[5]. Its trade-offs are the 



high costs associated with the material and human resources necessary for its 

implementation [6]. Therefore, it is important to have a wide range of analysis 

techniques that allow maximum knowledge to be mined from each session, or the 

learning process to be improved by reducing the number and eventually the cost of 

the sessions. 

Usually, the procedural assessment tools used to analyse the executions in a 

simulation context have the objective of making individual evaluations of a formative 

or summative nature. Thus, checklists, for example, allow the execution of the steps 

of a procedure to be analysed dichotomically, without assessing quality. Global Rating 

Scales (GRS) carry out a global qualitative analysis with some inter-reliability 

deficiencies [7],[8]. These experiences have been used in various procedures, such 

as the installation of central venous accesses, lumbar punctures, cardiovascular 

resuscitations, paracentesis, etc. [9-13]. However, there are no tools that analyse the 

procedures from the perspective of control-flow, i.e., the order in which the activities 

of the process are executed. The use of process models - a simplified pattern of a 

medical procedure in a formal or semi-formal representation [14],[15] - allows the 

direct analysis of control-flow, but also indirectly benefits the learning process, as the 

process is clearly set out and broken down into a series of ordered activities; input that 

is required before training. [16],[17]. 

 

Process Mining is an emerging discipline which bridges the gap between traditional 

model-based process analysis and data-centric analysis, delivering tools to analyse 

and improve processes from factual data obtained from real instances of process 

execution [18]. In the healthcare domain, process mining has been used in different 

case studies e.g. medical treatment processes, organisational processes and non-

elective and elective care with promising results [19],[20]. In the educational arena, 

process mining has been used to identify behaviours in online learning environments, 

feedback delivery, computer-based assessment, among others [21]. To the best of our 

knowledge, there are no studies describing the use of process mining as a tool for the 

analysis of educational experiences in healthcare disciplines, such as the learning of 

procedural skills. 

 

Our hypothesis is that, by using process mining tools, we can obtain information about 

patterns of execution of a procedure and how it evolves during a training program, in 



addition to making a diagnosis based on comparisons with an ideal execution model. 

We will use process mining as a model for analysis in the training of an invasive 

medical procedure: ultrasound-guided internal jugular central venous catheter 

(UGIJCVC) placement; analysing it from a control-flow perspective before and after 

the course, as well as comparing trainees’ and experts’ performances in the 

procedure. 

Context 

 

For analysis, video extracts from a previous study [22] were used, oriented to the 

training of residents from different specialty programs (anaesthesiology, intensive 

medicine, cardiology, nephrology and emergency medicine). This study included a 

training program which was carried out in four stages: 

 

1. Online Instruction: three web-based recorded lectures were available, each one 

with obligatory and complementary readings. At the end of this stage, a written 

evaluation and video recording of the procedure execution (PRE) were carried 

out. 

2. Demonstration session: for the entire group of residents, an expert 

demonstration of the entire process of installing an internal jugular central 

venous access in Blue Phantom CVC torso [Blue Phantom®, Redmond, WA] 

was performed. In addition, there were 4 stations of deliberate practice: a) a 

station for the preparation of the ultrasonography equipment, patient and work 

tools, b) a station for the handling of the ultrasonography equipment, c) a station 

for venous puncture with ultrasonographic guidance, d) a station for catheter 

installation and fixation. 

3. Deliberate Practice: Residents had to complete four sessions of deliberate 

practice accompanied by an instructor who supervised and gave immediate 

feedback. 

4. After completing the course, each participant made a second video recording 

of the process of UGIJCVC (POST). 

5. In addition, videos of the procedure were obtained by anaesthesiologists with 

at least 5 years of clinical experience at UGYCVC (EXP). 



Methods  

  

Prior to approval by the institutional ethics committee (Id: 16-194), videos obtained 

from previous training sessions were used and the proposed method was executed in 

three stages: 1) Model Sources and Modelling, 2) Data Sources and Collection, y 3) 

Control-Flow Analysis with Process Mining. 

Model Sources and Modelling 

The first stage of our method was the definition of a generic process model [14,15] of 

central venous catheter access with ultrasonography. As a modelling notation, we 

used Business Process Model Notation (BPMN) [23], which stands as the de facto 

standard most widely used due to its versatility, expressiveness and ease of 

interpretation for users in non-computing areas [24],[25]. This first model was 

submitted to a consensus procedure using Delphi methodology [26],[27], through an 

online survey. National experts were asked to score the appropriateness of including 

the activities proposed in the model using a 5 point Likert scale, and to propose new 

activities. The criterion for maintaining an activity was a consensus of 75% or more, 

and an average of the absolute percentage changes in all responses of less than 15% 

[28] in successive rounds was defined as the stopping criterion for ending the rounds, 

planning a maximum of three rounds if that criterion was not met. 

Data Sources and Collection 

The second stage was the generation of event logs, i.e., structured data on the 

execution of the process [29] [18]. Event logs were obtained from a secondary analysis of 

the video recordings from a previous study [22]. To obtain these event logs, video 

recordings of the execution to be analysed were used, from which the different 

activities observed were manually labelled and their start and end times noted. We 

considered 34 videos of the PRE stage, 30 of the POST stage of the training course, 

and 9 videos were obtained by anaesthesiologists with at least 5 years of clinical 

experience at UGIJCVC. Six video recordings (5 PRE and 1 POST) were not used 

because they were incomplete. The videos were tagged based on an observer-based 

approach [30], using the VcodeVdata tool [31], software developed to make 

annotations in video recordings. Two observers, blinded to the characteristics of the 



executor and moment of execution (PRE or POST), did the labelling of the activities in 

the videos. In an arbitrary way, it was decided that a set of 26 videos, chosen in a 

random manner, would be analysed by two observers. To evaluate agreement 

between observers, we used Normalized Levenshtein Distance Metric (NLD) [32-34], 

a metric that quantifies the similarity between strings, based on the number of 

eliminations, insertions, and substitutions necessary for two compared chains to be 

equal, which are normalised by the maximum possible number of changes in both 

chains and are expressed as differences of 1; considering this value as equal traces. 

An average value of NLD equal to or greater than 0.85 was defined as sufficient 

agreement to proceed to divide the rest of the videos between the two observers. 

Process Mining Analysis 

  

The third stage used the reference process model and event logs to analyse the 

control-flow of the executions using process mining. This paper proposes the 

application of 3 state-of-the-art analysis techniques appropriate to the proposed 

scenario in medical education.  

 

1.    Rework Analysis: For each activity, the Rework Metric was defined as RM= af/nc, 

where af represents the absolute frequency of the activity, and nc the number of cases 

where it appears. The metric allows the activities involved in the rework to be quantified 

and pinpointed, i.e., activities that are performed several times [18]. The metric was 

calculated for each of the individual runs, as well as for each of the groups as a whole, 

using the average values, standard deviation and range for PRE, POST, and EXP.  

2.    Conformance Analysis: In process mining, the techniques of conformance 

checking allow the degree to which a process execution conforms to the process 

model to be quantified [35]. State-of-the-art conformance checking techniques "align" 

each execution with the process model, and define metrics to numerically determine 

the adhesion to the model [36]. The most widespread metric, and the one used in this 

article is alignment-based fitness, defined as AF = co / cw, where co is the computed 

optimal alignment cost and cw the worst-case alignment cost computed for that model 

and execution [36]. A standard cost function is used as a cost function, where all the 

incorrect executions of activities have the same weight in the metric. For more details 

about the algorithm, we refer the reader to [36]. Alignment-based fitness was applied 



to each of the study groups: PRE, POST, and EXP, values presented as median (25-

75 percentile) [rank]. 

 3.    Trace Alignment Analysis: Finally, the third process mining technique applied is 

Trace Alignment Analysis. In this analysis, each execution of the procedure represents 

a trace. The algorithm described in Bose et col [37] allows a group of traces to be 

aligned, computationally and visually, highlighting the parts that are common among 

the different executions and highlighting the differences. This allows the similarity in 

control-flow of the execution of the procedure of different groups to be qualitatively 

evaluated. The algorithm allows the execution of a case to be analysed individually in 

comparison with others. The comparison can be evaluated with a global granularity 

(e.g., the procedure from beginning to end), or by analysing the similarity at specific 

stages of the procedure. Unlike the classic algorithm of Needleman and Wunsch [38] 

designed to optimally align two amino acid sequences, the trace alignment algorithm 

[37] adopts a heuristic strategy to align several process executions in reasonable 

computational time. In particular, the algorithm is based on the progressive alignment 

approach, where the idea is to iteratively construct a succession of pairwise 

alignments. Alignment is allowed between a pair of traces, a trace and an alignment 

and between alignments. The selection of traces for alignment at each iteration is 

based on their similarity. Traces that are most similar to each other are aligned first. 

Once similar traces have been aligned, the resulting clusters of traces are aligned 

against each other. The implementation of the algorithm used in this work corresponds 

to the tool ProM [39]. For more details about the algorithm, we refer the reader to Bose 

et al [37]. Trace alignment was applied to each of the study groups: PRE, POST, and 

EXP. 

 
[*Footnote1] The concept of "alignment" used in "Alignment-Based Fitness" and 

"Trace Alignment" is totally different. While the first one refers to the alignment 

between models and executions, the second uses a notion of alignment closer to the 

one used in bioinformatics [36] [37]. 

Statistical Analysis 



Statistical analysis is performed with the Mann-Whitney test for comparisons between 

training groups and Kruskal-Wallis for multiple comparisons when these include expert 

executions. A value of p < 0.05 is considered significant. 

  

Results 

Delphi Panel and Model Process. 

The Delphi panel surveys were answered by 13 national experts from 3 specialties 

(anaesthesiology, critical care medicine and nephrology) and 8 different institutions 

(public, private, university, military and regional cities hospitals). It was done in 2 

rounds because the absolute average variability of responses between the first and 

second round was 3.62%, with a standard deviation of 3.81%. The final generic model 

[Figure 1] considers 32 activities, including 28 activities proposed in the initial model, 

4 new activities proposed by the experts and in other hands, 7 activities from the initial 

model were excluded.  

 

Figure Nº 1. Central Venous Access with Ultrasonography Process Model in BPMN 

Notation. 

 

 
Figure 1. Representation of the generic model of a UGIJCVC installation in BPMN, where the outer 

rectangle (pool) encloses the complete process performed by an operator. Each column is a stage of 

the procedure. The activities are represented by squares joined by arrows representing the flow 

between each activity. Between some activities, there are gates that show flow to more than one activity, 

which can be inclusive (and/or) or exclusive (or); the beginning and the end of a procedure is 
represented by circles. 
 



 

Process Mining Analysis 

Rework Analysis 

Optimal execution of the UGIJCVC process requires the absence of rework, i.e., a 

value of rework metric equal to 1 for all the activities of the process. This is the case 

of the EXP group, where all activities are executed only once. Figure 2 shows rework 

metric for all activities in the PRE and POST groups, whose averages, (DS) [range] 

are 1.1 (1-1.4) [1-1.8] to 1.1 (1-1.2) [1-1.3] respectively, p value 0.03. In most of the 

activities, there is a decrease of the rework in the POST group; this decrease is 

especially noticeable in the stages of Venous Puncture, Guidewire Placement, and 

Catheter Placement, objectively showing these stages as the most difficult stages of 

the process for the group being trained. Note, however, that in the POST records, a 

metric of 1 is not obtained for all the activities. 

 

 
 

 



 

 

Conformance Analysis 

 

The conformance analysis (Figure Nº 3) shows the alignment-based fitness metric for 

the PRE, POST, and EXP groups in relation to the process model. The PRE group 

has a lower adhesion to the ideal process model, with an Alignment-Based Fitness 

value of 0.74 (0.68-0.78) [0.62-0.87] expressed as a median (25-75 percentile) [range], 

than the group POST with 0.82 (0.76-0.86) [0.62-0.9], and EXP with 0.87 (0.82-0.87) 

[0.80-0.93]. There are significant differences in control-flow between PRE, POST and 

EXP with values of p 0.0006 and <0.0001, respectively. However, there are no 

significant differences between POST and EXP.  

 

 



 

 

Trace Alignment Analysis      

      

In the graphic display of the Trace Alignment Analysis (Figure Nº4), each block 

represents each of the three groups identified: PRE, POST and EXP. In each block, 

the rows represent a particular execution, a trace, identified in the first column with an 

id. At the same time, each activity is represented throughout the block by a rectangle 

of a defined grey-scale colour and a letter inside it. In this way, trace alignment allows 

a visualization of all the executions of each group, making it clear within each one of 

them where there are areas with sequences of activities carried out in the same order 

in several executions.  

In this case, Trace Alignment Analysis shows considerable control-flow differences 

between each execution in the PRE group, showing two zones of sequential activities, 

first preparative activities (Zone A) and second, from when the blood is drawn until 

when the Seldinger guidewire is advanced (Zone B). However, the executions of the 

POST group increase the number of common areas to three: venous puncture (Zone 

C), preparation of implements (Zone D), and removal of the guide (Zone E). Finally, 

the executions of the EXP group show a much greater order, expressed in clear areas 

and longer sequences of activities carried out in the same pattern (Zones F and G). 

 

Figure Nº 4. Trace Alignment Analysis  

 

 



Discussion 

To the best of our knowledge, this is the first study using process mining methods to 

analyse data from the learning process of procedural skills in the healthcare field. The 

proposed analysis provides information that generates new perspectives of the 

execution of the procedure during the training process. We can identify which activities 

are more difficult from a control flow perspective, the adherence of the actual 

executions in relation to the ideal model of execution and common patterns of 

executions at different levels of procedural competencies. 

 

The proposed control-flow analysis provides important information regarding 

execution patterns at different levels of competence to be obtained. A specific expert 

performance pattern does exist, which is different from the observed pattern in the 

novice level participant. A progression between these two stages can be inferred from 

the POST results. This way we can appreciate, when analysing the images of the 

Trace Alignment Analysis (Figure Nº4), that the Venous Puncture, Guidewire 

Placement and Catheter Placement stages are consistently executed in the same 

order by all the experts, and that the training demonstrates that the course allows an 

increase in order in these stages and in the overall execution of the procedure with a 

decrease in variability among residents. At the same time, we can see that the 

repetitions of activities are concentrated in the same stages (Figure Nº2), with higher 

values of rework prior to training, which decrease considerably once finished, which 

makes the beneficial effect of the course clear, even when they did not reach the level 

of the experts, who do not repeat any activity. 

 

The ideal way in which a procedure should be executed should be made explicit prior 

to the start of the training [40] [41] [42]. This is not trivial, especially when trying to 

extract this knowledge from experts, because they can omit up to 70% of the 

information needed for proper execution [16]. To avoid this problem, Cognitive Tasks 

Analysis (CTA) has proven to be an effective tool, allowing the necessary steps, critical 

points, cognitive decisions, etc. to be clearly set out based on expert interviews 

[17][16][43]. Control-flow analysis offers new information based on a factual 

approximation of the executions of experts, which allows the CTA to be enriched, 



based on how the procedure is actually executed. In this way, we can consider that 

for this procedure, the experts do not make mistakes that oblige them to repeat 

activities and they perform activities consistently in the same order from venous 

puncture to catheter placement. An analysis of this type makes it possible to begin to 

characterize the executions of the procedures. We can identify key features at 

procedural level [44],[45], the technical skills that are critical and specific for the good 

result of each procedure, with the implications this knowledge has from a perspective 

of training and also of evaluation [46]. 

 

A recent review that aimed to collect the best evidence available for training in 

procedural skills from medium to greater complexity [47] points out the positive role of 

decomposition into units of knowledge and skill. It also highlights the need to limit the 

number of skills taught in each session to avoid student cognitive overload [48], 

[49],[50]. In the specific case of the our UGIJCVC training program, we subdivided the 

training into the 4 stations referred to in the materials and methods section, but the 

control-flow results suggest a new subdivision of the Venous Puncture, Guidewire 

Placement and Catheter Placement; because they represent the stages where 

residents make the most mistakes, forcing them to repeat these activities (rework 

metric more than 1). Including them all in a single session implies exposing the trainee 

to the most difficult stages at the same time. Our analysis, allows to create subdivisions 

based not only on logical considerations, but also upon factual procedural evidence of 

the motor skills load that the task implies. In addition, recognizing these difficulties 

would allow us to focus on the development of lower fidelity phantoms at a lower cost, 

in order to train doctors in each of these skills separately, and, at a later time, integrate 

these steps into a fluid activity in a high fidelity phantom. Furthermore, the good results 

in the preparation and cleaning stages, show that the online training section fulfils its 

cognitive role since the activities are consistently carried out without error and do not 

present important modifications after training. This online module prepared our 

students to start working on the next steps that put more demands on motor skills. 

 

Medical education has progressively migrated towards a competence-based training 

approach, so valid evaluation tools are needed to be able to account for the 

achievement of these competences [51],[52],[53]. There are different ways of 

evaluating the acquisition of procedural competences and none of them are perfect, 



since each one has its strengths and weaknesses [8], [54], [13]. The result of the 

compliance analysis presented in this research shows the potential of using it as an 

evaluation tool from the control-flow perspective. This makes a comparison between 

the execution performed and a generic reference model. As described in methods, this 

metric is based on penalizing violations of the ideal pattern in terms of not executing 

an activity, thus collecting the information captured by the checklists, but it also 

penalizes the activities executed in a different order than expected, thereby a 

qualitative aspect usually captured by the global scales is collected. In the case of 

UGIJCVC, the Alignment-Based Fitness metric shows an increase as a result of the 

course that is also concordant with the performance of the experts. To demonstrate 

that its use as an evaluation tool is valid, a psychometric validation process ('assessing 

the assessment tool') [55-58] must be performed. In light of our results, we believe that 

it can be a good tool, for which there are still possibilities to improve their discriminatory 

capacity, working on differentiated weights of violations to the ideal pattern based on 

patient or clinician safety, patient comfort, and procedure outcome, a proposal that 

has also been suggested as a way to improve the checklist [59]. 

The feedback process, defined as information from any source about an apprentice's 

performance with respect to a task goal [60], plays an essential role in training in 

procedural skills. A recent meta-analysis oriented to its use in simulation demonstrates 

that it has a moderate effect on the training of these skills [61].  At the same time, it 

raises concerns about what, who, how, and when it should be delivered to maximize 

its positive impact on learning. In this context, the control-flow information obtained 

from the process mining analysis can be a source of standardized and valuable 

information to the trainee. For example, in the UGIJCVC training case, the results of 

trace alignment and rework analysis allow the learner to perceive the activities he/she 

executes properly, repeats, does not perform and even identify stages of greater 

difficulty when graphically visualizing more than one execution. This could be 

considered process-oriented feedback [62]. In any case, the possibility of using this 

information as a source of feedback should be planned considering that not only the 

content plays a role in its effectiveness, but also the execution method and how it has 

an impact on the motivation of the trainees [60]. 

 



Limitations 

 

In our research, we retrospectively used data corresponding to the training of residents 

of several specialties, analysed before and after exposure to simulation training. Given 

that our objective was to explore the potential of control-flow analysis in a new context, 

the findings are a good approximation for the planning of prospective studies that will 

allow us to demonstrate the final usefulness of our approach. On the other hand, the 

executions of the EXP group were all carried out by anaesthesiologists from the same 

centre, which is a bias that may limit the generalization of the conclusions derived from 

the analysis of this group. 

 

  

Conclusion 

 

In conclusion, the control-flow analysis based on process mining tools can make 

explicit information about the executions carried out in different stages during training 

in the simulation context. This information, which can be obtained both from single 

executions and from the analysis of a complete group, allows the identification of the 

activities and stages that cause residents greater difficulty and how these are modified 

with the training. In addition, it allows the specification of some other patterns in the 

different levels of competence, making it a promising metric for the evaluation of a 

reference pattern. 
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