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Abstract—Recently, process perspective has been incorporated
into the surgical training. These approaches use Process Mining
to provide instructors with procedural reports of each student.
However, reviewing those reports in a random order could be
unnecessarily tedious: each report could be totally different from
the previous one, preventing the instructors of any comparative
aid, and forcing them to change their mindset every time.
Complementary to other approaches such as clustering or tacit
knowledge, we propose an approach to optimize, from a process
perspective, the ordering of the students executions, such that
the procedural distance between an execution and the next one
is the lowest possible. The contribution of this paper is twofold:
first, the problem is formalized; second, a method for solving the
problem tailored to surgical training is presented. Preliminary
results are provided, and the preliminary validity of the approach
has been corroborated by a medical expert.

Index Terms—process mining, case ordering, healthcare, med-
ical training, surgical procedures

I. INTRODUCTION

The usage of the process perspective in the healthcare anal-
ysis is not new. In [1] the authors presented a literature review,
identifying more than 74 study cases where Process Mining
[2] was used to analyze the process perspective, in fields such
as dentistry [3], pediatrics [4], and oncology [5]. Surgery is
no exception to the analysis of this process perspective, e.g.,
in [6], [7], authors propose models and frameworks to aid on
the analysis of surgical procedures.

Recently, a new research line has appeared, where the
process perspective is analyzed in the context of medical
education, and specifically on the training of surgical proce-
dural skills. In [8], [9] the authors propose a novel method
where student training executions are recorded to be used
as valid observational data [7]. Activities observed in the
recordings are tagged, and Process Mining is then used on this
event data to generate procedural reports for the students [8],
[9]. Those reports provide end-to-end process models of the
execution, and complement other existing feedback/evaluation
instruments such as Checklists and Global Rating Scales [10].

A partial example of such reports from [9] is shown in Figure
1.

This novel method has resulted in new set of challenges. For
instance, from the course instructors perspective, reviewing a
procedural report of one of their students is a non trivial task.
Focus and accuracy is required to understand the end-to-end
process models. If the instructor needs to review n reports at
a sitting, and the reports are not ordered in any specific order,
that could be an unnecessary tedious task, i.e., each report may
be totally different from the previous one, so the instructor
needs to “reset” his/her mindset, and start the analysis from
scratch. Several alternatives could be applied to mitigate this
problem. For instance, clustering techniques [11] could be
apply to group the n reports into clusters of similar reports.
Other techniques, such as tacit knowledge based approaches
[12], instructors reviews against their knowledge about how
the procedure must be executed.

This work explores a complementary approach to order the
reports, where consecutive reports are ordered by similarity.
The driven idea is that the mindset change that would require
to change from one report to a similar next one would be
lower, and consequently the instructor would be able to use
the recent effort as a prior for the new analysis, improving the
efficiency and reducing the tediousness. Notice that this new
approach could be complementary to other approaches, e.g.,
a large set of reports are clustered, and within each group the
reports are ordered by consecutive similarity.

This paper proposes a method to provide an ordering of
surgical procedure training course executions in which the sum
of procedural difference between consecutive executions is the
lowest possible. The contribution of this paper is twofold:
first, the Optimal Case Ordering Problem is presented and
formalized; second, a method is proposed to address this
problem in the context of surgical procedural training.

This paper is structured as follows: Section II presents the
CVC real case used as a running example to illustrate the
concepts of the paper. In Section III the problem is presented,
and Section IV proposes a method to address the problem.
In Section V, an alternative is provided for one of the steps
of the method, using available validated medical evaluation978-1-7281-5613-2/19/$31.00 c©2019 IEEE



Fig. 1. Diagram of the Guidewire Install surgical procedure stage included in the feedback report from [9]. The expected execution is shown on the left side
and the student’s performance is shown on the right side.

instruments. In Section VI a preliminary experimentation is
presented to evaluate the feasibility of the proposal with both
synthetic data and a real case. Finally, Section VII concludes
the paper.

II. RUNNING EXAMPLE: THE CVC CASE

In order to illustrate the different concepts of the approach
we will use the Central Venous Catheter (CVC) case as
a real running example. The Central Venous Catheter case
(hereinafter referred to simply as CVC) is a surgical procedure
training where the students are trained about how to install a
catheter using ultrasound. We released the data of a particular
execution of this course as part of the Conformance Check-
ing Challenge 2019, and it is publicly available in [13] for
reproducibility purposes.

The general idea of the CVC procedure is as follows: 1)
a large hollow needle (called trocar) attached to a syringe is
punctured into the vein with the help of ultrasound, 2) the
syringe is used to check if there is blood return (the trocar is
well installed) and it is removed from the trocar if so, 3) a

guidewire is inserted through the trocar, and then the trocar
is removed, 4) the pathway is widen and the wire is used to
advance a catheter, 5) finally, the guidewire is removed.

The procedure was modeled using other medical instru-
ments –Checklists and Global Rating Scales [10]– designed
for the same procedure [14], and it was iterated by a medical
experts Delphi panel [9]. The execution data was also pro-
cessed by medical experts through video observations of the
procedure. Models and execution data in different formats are
available in [13]. We refer the reader there for more details
on the CVC case.

III. PROBLEM DEFINITION

The first contribution of this paper is the definition of a
novel problem designed to aid in the new process-oriented
medical education research line: Optimal Case Ordering Prob-
lem. As it was aforementioned, the final goal of the problem
is to determine an order for the surgical procedural training
executions (i.e., cases) of the students in a course, to aid the
instructor in the analysis and evaluation of the reports derived
from those executions.



In order to define the problem, we first define the necessary
concepts.

Definition 3.1 (Activity, Case, and Course): Let A be the set
of activities defined for a surgical procedure, i.e., the procedure
steps to be executed. Each student execution of the procedure
is represented by a case, i.e., a sequence of activities c =
〈a1, a2, . . . an〉 performed by the student. A course of students
C = {c1, c2, . . . , cn} is represented by the set of cases, one
for each student.

In a practical scenario, the student execution may include
other information besides the activities and their order, e.g., the
specific medical implements used in a specific activity. How-
ever, since this is a procedural perspective based approach, we
can abstract from this additional information. Similarly, a case
may contain other information, e.g., the name of the students
or their medical discipline. In this approach we assume an
identifier (e.g., k) to refer to the case ck, identifying the
student, and eventually all the additional information.

The CVC case defined 29 activities, such as Puncture
(the trocar), Install Guidewire, or Advance Catheter. The
course contained 20 students.1 The case c6 corresponds to
the sequence of activities 〈Get in sterile clothes, Prepare
implements, ..., Puncture, Blood return, ..., Remove guidewire,
Check flow and reflow, Check catheter position〉. For the
sake of reproducibility, we assume as case identifier the case
position in the execution data provided in [13].

Given two cases, we define a distance function between
them, as a representation of the procedural perspective simi-
larity between the cases.

Definition 3.2 (Procedural Case Distance): Let ca and cb
to be two cases of a course C, i.e., ca, cb ∈ C. We define the
function d(ca, cb) → [0,+∞) as the distance between two
cases.

This generic distance definition can be instantiated in a wide
range of different ways. In Section IV we propose a method
and a function instantiation specific for the surgical procedure
domain and its characteristics.

In order to find an ordering of the executions, we first define
a course ordering and its total distance.

Definition 3.3 (Course Ordering and Total Distance): Let C
be a course such that C = {c1, c2, . . . , cn}. A course ordering
O = 〈o1, o2, . . . , on〉 is defined as a sequence of the cases
in C, i.e., |C| = |O| and ∀c∈C exists an o ∈ O such that
o = c. We denote as UO the universe of all possible orderings
of the course.2 Given an ordering O = 〈o1, o2, . . . , on〉 and a
distance function d, we define the total distance of the ordering
as the sum of the distances between all two consecutive cases
in the ordering, i.e., t(O) =

∑|O|−1
i=1 d(oi, oi+1).

The problem presented in this paper is defined as finding
an order in which the total distance is minimal, i.e., the order

1The course was designed with a before (PRE) and after part (POST)
executions with 10 students in each part. For the sake of simplicity, in this
paper we assume all 20 executions as 20 different students of the same course.

2Notice that to be formally correct, elements described in this paper must
include their contexts, e.g., UC

O to specify the course C it refers to. However,
and for the sake of readability, we omitted them when the context is clear.

is optimal.
Definition 3.4 (Optimal Case Ordering Problem): Let C be

a course, and let d and t be the distance and total distance
functions, respectively. We define the optimal case ordering
problem as finding an ordering O for the course C such that
∀O′∈UO t(O) ≤ t(O′), i.e., there is no other case ordering with
lower total distance.

Notice that the problem is different than comparing each
case with the ideal model, and determining an ordering from
more conformant to less conformant. The problem propose to
minimize the distance between an execution and the next one,
in order to aid the instructor in the report evaluation, reducing
the comparison gap between two consecutive evaluations.

IV. POME CASE ORDERING APPROACH

The second contribution of this paper is the proposal
of a method to instantiate the aforementioned optimal case
ordering problem to be applied to process-oriented medical
education (POME) scenarios. The method takes into account
the specific characteristic of the surgical procedural training
domain. First, a subset of activities (called keystone activities)
are selected to represent the main procedural elements of the
process. Later, the keystone activities are used to define a
set of abstraction features, and a footprint of such features
is extracted from each case. Next, the similarity between
two cases is defined by the distance between these feature
footprints. Finally, a Greedy and a Branch & Bound algorithm
are proposed for finding the optimal case ordering. This
section first presents each step of the method.

A. POME Keystone Selection

The first step of the approach is to select the keystone ac-
tivities, i.e., the activities used to extract a process perspective
abstraction of the cases.

Definition 4.1 (POME Keystone Selection): Let A be the
set of activities of the process. We define keystone activities
K ⊆ A as the subset of activities used to abstract the process
perspective of the model.

In a surgical procedure there is an heterogeneous variety
of activities. For example, some activities refer to actions
(e.g., puncture, suture, or install an implement), while others
refer to checking activities to verify the correct state of the
process (e.g., check catheter position). Although all have an
important role in the process, this method proposes the use of
action activities as keystone activities, as a suitable abstraction
for the procedural perspective in this scenario, since the
action activities are the ones that clearly advance the state
of the procedure. Although this method proposes the use of
action activities, in Section V we discuss alternative keystone
selection criteria based in domain-specific instruments such as
Checklists and Global Rating Scales [10].

In the CVC case, we select the following 7 activities
as the keystone activities: Puncture, Remove syringe, Install
guidewire, Remove trocar, Widen pathway, Advance catheter,
and Remove guidewire.



B. POME Procedural Features Abstraction

The second step of the method is the extraction of a feature
sequence for each case, representing its procedural perspective,
using the keystones previously defined.

In the literature, there is a wide range of alternatives to
extract features from a process execution. One of the most
widely used in Process Mining is the dependency relation
abstraction. This relation is used in several algorithms such as
Heuristics Miner [15], and commercial tools such as Celonis
[16], because it is easy to interpret for non process expert users
(e.g., physycians). Given the medical nature of our scenario,
we decided to use the dependency relation as the basis of our
method.

Definition 4.2 (POME Procedural Features Extraction):
Let K be the set of keystones. The abstraction features
〈f1, f2, . . . , fn〉 are defined as all possible pairs between
keystones activities, i.e., {(k1, k2)|k1, k2 ∈ K}. We define
the feature sequence f(c) = 〈v1, v2, . . . , vn〉 of a case c, as
the sequence of integers indicating the number of occurrences
each feature in the case.

In the CVC case, and given the 7 keystone activities:
Puncture (P), Remove syringe (RS), Install guidewire (GI),
Remove trocar (RT), Widen pathway (WP), Advance catheter
(AC), and Remove guidewire (RG), the number of features
is 7 × 7 = 49, one for each pair of activities. The fea-
ture abstraction for the case c6 corresponds to the sequence
〈1, 1, 1, 1, 1, 1, 0, . . . , 0〉, where there is a 1 for the features
(P,RS),(RS,GI),(GI,RT),(RT,WP),(WP,AC),(AC,RG), and a 0
for the rest.

C. POME Procedural Case Distance

The third step of the approach is to instantiate the function
to define the procedural distance between two cases (cf. Defi-
nition 3.2), i.e., define the degree of similarity between the fea-
ture abstraction sequence of two cases. In the literature, there
is a wide range of well known distance metrics that can be
applied to measure the similarity between sequences/vectors
of integers, e.g., Euclidean distance, Hamming distance, Lev-
enshtein distance, among others [17]. This approach proposes
the use of the general purpose distance –Manhattan distance
[18]– given that is easily applied to all surgical procedures.

D. POME Optimal Case Ordering Computation

The last step of the approach is to compute an optimal
ordering, i.e., solve the Optimal Case Ordering Problem (cf.
Definition 3.4). It is easy to see that this is a computationally
complex problem, with high similarity with the Travel Sales-
man Problem (TSP): in this problem, each city is a case, the
distance between cities is the distance between cases, and the
tour visiting every city is the ordering of each case.

Strategies designed to solve the TSP could be easily trans-
lated to the case ordering problem. This approach proposes
first the use of a greedy strategy that provides a (possible) good
solution almost instantaneously. The greedy strategy proposed
is based on the Nearest Neighbour (NN) heuristic: given a
case, the greedy strategy chooses the closest case to add to

the partial solution. In the TSP problem, this algorithm quickly
yields an effectively short route, e.g., for N cities randomly
distributed on a plane, the algorithm on average yields a path
25% longer than the shortest possible path [19]. In our case,
the best effort greedy algorithm achieves similar results, even
nearer in most cases. For example, in the CVC case, the
proposed greedy algorithm finds a 41 distance solution, being
39 the optimal distance.

Notice that, although optimization problems such as those
are not feasible for non-small number of cities/cases, the
method proposed in this paper was designed for the POME
surgical procedures training scenario, i.e., for logistic and
pedagogical reasons in such domain courses are typically of
6-12 students. Moreover, it is not a realistic assumption to
consider that a single instructor will review a higher number
of procedural reports in one sitting. Additionally, depending
on the procedural abstraction used, several students may have
the same feature sequences (e.g., specially the correct order
of the procedure commonly performed by the most advanced
students), being able to aggregate these cases, reducing the
computation time. Thus, this approach proposes an additional
algorithm to compute the exact optimal ordering. The proposed
method is based on the Branch & Bound algorithms [20]: first,
an upper-bound is computed using a fast greedy algorithm (in
our case, the NN greedy described above), then the search
space is explored but pruning those paths with guaranteed
worst solutions. This bound is constantly updated during the
exploration [20].

This algorithm is preferred when immediately response is
not required, since it guarantees the optimal ordering. For
example, in the CVC case, the computation time using this
algorithm was around 2 minutes. Since this is only done
once before the instructor evaluations, this is a reasonable
alternative.

V. INSTRUMENT-BASED GUIDELINES FOR KEYSTONE
SELECTION

In the previous section, a keystone activity selection was
proposed, where the semantic of the activities is used, i.e.,
action activities are selected due to their goal of advance
the procedure, where other activities such as checks and
preparations are discarded. Although this approach provides
meaningful results, alternative keystone selection methods
could be proposed. In particular, this section discusses key-
stone selection based on available evaluation instruments.

It is easy to see that, since the process perspective is a
novel and complementary analysis technique, current surgical
procedure training uses well-established and validated instru-
ments to evaluate the students. The most commonly used are
Checklists (CL) – where a medical expert indicates if a step
has been performed or not – and Global Rating Scales (GRS) –
where each element is evaluate in a scale which levels depend
on the item evaluated [10].

The proposed approach matches items from the CL and
GRS, and activities in the process. Process activities with
a corresponding match are selected as keystones (because



Area is cleaned with chlorhexadine
Resident gets in sterile gown, gloves, hat and mask
Area is draped in usual sterile fashion (must be full body drape)
The vein is localized
The skin is anesthetized with 1% lidocaine in a small wheal
The deeper structures are anesthetized
Using the large needle, cannulate the vein while aspirating
Remove the syringe from the needle
Advance the guidewire into the vein no more than approximately 12–15 cm
Knick the skin with the scalpel to advance the dilator
Advance the dilator over the guidewire and dilate the vein
Advance the triple lumen over the guidewire
Never let go of the guidewire
Once the catheter is inserted remove the guidewire in its entirety
Advance the catheter to approx 14–16 cm on the right side
Ensure there is blood ow/ush each port
Secure the catheter in place (suture or staple)
Maintain sterile technique
Ultrasound set up

TABLE I
CHECKLIST USED BY THE INSTRUCTOR TO ASSESS THE STUDENTS

PERFORMANCE.

current medical evaluation focuses on such steps), while not
matched activities are discarded. The matches are done using
the semantics of the items and activities. Three types of
matches are possible: 1-to-1 matches (where a CL/GRS item
is matched to exactly one process activity), 1-to-n matches
(where a CL/GRS item refers to more than one activity), and
n-to-1 matches (where several items analyze the execution
of the same activity). In the CVC case, a Checklist was
available (see Table I for the specific CVC item list [14]). Item
Resident gets in sterile gown, gloves, hat and mask, can be
matched 1-to-1 with the process activity Get in sterile clothes.
On the other hand, Advance the guidewire into the vein no
more than approximately 12–15 cm, Advance the triple lumen
over the guidewire and Never let go of the guidewire, are
matched n-to-1 with the activity Guidewire install. Finally,
Anatomic identification, Doppler identification and Compres-
sion identification process activities are matched 1-to-n with
the Checklist item The vein is localized, and model could
be simplified with a Vein Identification activity. The resulting
keystones for the CVC are Prepare implements, Get in sterile
clothes, Drap puncture area, Ultrasound configuration, Put
sterile gel, Position probe, Vein Identification, Anesthetize,
Puncture, Blood return, Remove syringe, Guidewire install,
Widen pathway, Advance catheter, Remove guidewire, Check
flow and reflow and Check catheter position.

The proposed guidelines could be refined, introducing the
notion of weights for each match, and defining a threshold
to establish whether an activity is selected as a keystone.
For instance, activities with n-to-1 matches has more weight
(assuming that activities that are evaluate from different per-
spectives has more interest for the instructors), or matches
from GRS have higher weight (since the instructors are not
only interested if the activity is performed but the level of
proficiency on its performance).

Fig. 2. Performance comparison by course cases (instances) between Greedy
and Branch&Bound algorithms.

VI. PRELIMINARY EXPERIMENTAL EVALUATION

In this section, we present some preliminary experimental
evaluation of the approach, as it is presented in Section IV.
The evaluation includes experiments with synthetic data and
a real case validated by a medical expert. Notice that, giving
the workshop nature of the venue, this section provides only a
preliminary evaluation, providing only intuitions of the validity
of the approach. A more complete evaluation is required,
including experiments with several experts, but for space and
time constrains this is left as a future work.

In the first experiment, we illustrate the effects in time
accuracy of the approach, regarding the number of cases in
a course. For that, incremental synthetic CVC-inspired cases
were randomly generated, and the two algorithms were tested:
Greedy, and Branch&Bound (B&B). For each algorithm we
provide the computation time, and the resulting total distance
of the ordering found. Experiments were executed on an Intel
Core i5 processor running at 2GHz and 8GB of RAM. The
approach was coded in Python.

Performance results are presented in the Figure 2. As
expected, the B&B presents a exponential behavior, showing
a significant time increase after 9 cases. However, 9 cases for
a surgical course is a realistic number, specially since B&B
provides an optimal ordering. On the other hand, as expected,
the Greedy algorithm presents a linear time, providing results
almost instantaneously. That is also the case for larger courses
(15,20,25,. . . ), although the figure only shows until 12 for
comparison reasons with the B&B. Although the Greedy does
not guarantee an optimal, in most cases the provided solution is
optimal or close to, as Figure 3 shows. The figure compares the
B&B total distance (the optimal) with the Greedy best effort
solution, for all the synthetic cases defined. In half of the cases
the solution reported is optimal, and in the others the difference
only ranges between 1 and 5. As recommendation, Greedy
should be used with larger courses or whenever instantaneous
answer is required (e.g., when different distance criteria want
to be compared), while B&B should be used for average size
courses and when it is necessary to be performed only once
before the instructor evaluations.



Fig. 3. Total distance comparison by course cases (instances) between Greedy
and Branch&Bound algorithms.

In the second experiment, a real case was used: the CVC
case presented as a running example. The course consisted
of 20 students, and the keystones and functions were used as
described in Section IV. Feature abstractions were extracted
from the 20 students. We detected that 11 out of 20 had
the same feature sequence, mostly the more advance students
who performed the procedure as expected. Those cases were
aggregated in 1, resulting in 10 executions in total. The Greedy
algorithm took 0.2 seconds, and reported a solution of distance
41. On the other hand, the Branch & Bound took 2 minutes
and 13 seconds, reporting an optimal solution of distance
39. As expected, the time difference is considerable, although
both provide results in a reasonable time, while the best-effort
solution is only 2 points below the optimal.

Table II shows the resulting ordering for each method. Cases
are identified by their real CaseID, and an additional StudentID
for the sake of readability of this table. Additionally to the
orderings provided by the algorithm, a medical expert and
instructor of the CVC course was asked to provide an ordering
based on the case similarity, also reported in Table II.

Table II shows similarities between the orderings obtained
by both algorithms, and some minimal differences. Greedy
places S6 at the beginning, before the sequence S1, . . . , S5,
and swaps the order of the students S9 and S8. In order
to illustrate the differences between the keystone activities
among consecutive students in the obtained orderings, Figure 4
shows a diagram for the execution of the keystone activities for
each of the 5 students of the sequence S1, . . . , S5, mentioned
before. It can be observed that the first case has a greater
distance, d = 8, to the following case compared to the
distances between the other cases, which is reflected in the
fact the first diagram is quite different to the other ones;
therefore, the first case could be considered as an outlier. In
turn, without considering this outlier case, a pattern is observed
in the ordering of the remaining cases, since they differ in
the amount of keystone activities that are executed before
a rework; the rework occurs earlier while descending in the
diagrams.

StudentID / CaseID B&B Greedy Expert
S1 = 1539314415211video 2.1 CVC S1 S6 −S1−
S2 = 1539316889981video 3.1 CVC S2 S1 S6

S3 = 1539832275246video 4.8 CVC S3 S2 S5

S4 = 1547698148253video 1.h CVC S4 S3 S4

S5 = 1539737717686video 3.3 CVC S5 S4 −S7−
S6 = 1539739275781video 4.5 CVC S6 S5 S3

S7 = 1547683734202video 1.c CVC S7 S7 S2

S8 = 1539302414925video 1.3 CVC S8 S9 S9

S9 = 1539734942389video 3.2 CVC S9 S8 S8

S10 = 1548037113729video 2.d CVC S10 S10 S10
TABLE II

ORDERING OF THE REAL CVC CASE REPORTED BY BRANCH & BOUND,
GREEDY, AND A MEDICAL EXPERT.

Regarding the ordering proposed by the medical expert,
it is important to keep in mind that the medical expert
considered S1 and S7 as outlier cases, since the former does
not correspond to a logical sequence of keystone activities
(first case in Figure 4), and the latter is the only case in which
the student does not execute all the activities required to carry
out the procedure. When asking the medical expert about the
criteria used for establishing the ordering, the medical expert
highlights the identification of outliers (the two described
previously), and grouping cases taking into account semantic
aspects. An example of grouping is the set of cases S2, . . . , S5

shown in Figure 4, without considering the outlier S1. The
same ordering appears in the ordering of the medical expert,
but in the reverse order S5, . . . , S2 (excluding the outlier S7).

VII. CONCLUSIONS AND FUTURE WORK

This paper addressed the challenge of providing a favorable
student executions ordering, to maximize the similarity be-
tween consecutive executions, so instructors reviewing them
could benefit from the comparative aid of the previous analy-
sis. First, the paper defined and formalized the problem, and
then, it proposed a method to compute the ordering tailored
to the surgical procedure training scenario.

As future work, we would like to enhance our approach
considering the two criteria proposed by the medical expert:
allowing to detect outliers, and allowing to group cases before
ordering each group independently. Moreover, we plan to
conduct a more complete experimental study involving several
medical experts.
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