No Journal Yet manuscript No.
(will be inserted by the editor)

Conformance Checking

Jorge Munoz-Gama

Received: date / Accepted: date

1 Synonyms

Business process conformance checking

2 Definition

Given an event log and a process model from the same process, conformance check-
ing compares the recorded event data with the model to identify commonalities
and discrepancies. The conformance between a log and model can be quantified
with respect to different quality dimensions: fitness, precision, and generalization.

3 Cross-references

Automated Process Discovery
Event Logs and Visualization
Process Model Repair

4 Overview

Conformance checking compares an event log with a process model of the same pro-
cess [Munoz-Gama, 2016]. An event log is composed of a series of log traces where
each log trace relates to the sequence of observed events of a process instance, i.e.,
a case. An event can be related to a particular activity in the process, but can also
record many other process information such as timestamp, resource and cost. In
a real-life context, event logs can be extracted from Process Aware Information

Jorge Munoz-Gama

Department of Computer Science, School of Engineering,
Pontificia Universidad Catdlica de Chile

E-mail: jmun@uc.cl (B<)

2 Jorge Munoz-Gama

Evaluate
Evaluate
Academic
. Record .

Advisor CV
Fig. 1 Informal process model of a university scholarship process

Start Final "
Notify Results

Systems (PAIS) such as Workflow Management (WFM) systems, Business Pro-
cess Management (BPM) systems, or typical relational databases, such as SAP
database. Similarly, process models can often be extracted from the organization’s
information systems. These can be normative models that the organization uses to
manage their process, or descriptive, created by hand or automatically discovered
go gain insight into their processes [van der Aalst, 2013].

Depending on the nature of the model, discrepancies between the log and
model can have different interpretations [van der Aalst, 2016]. For a normative
model, deviations indicate violations of imposed constraints. For example, a bank-
ing process may require the processing and approval of a loan to be done by
different employees to avoid the risk of misconduct (four-eyes principle). Clearly,
conformance checking between an event log of the handled loan applications and
the process model can be applied to assess compliance. On the other hand, for a
descriptive model, deviations indicate that the model is not fully capturing all the
observed behavior in the log. For example, process analysts might perform confor-
mance checking on the models discovered by different process discovery algorithms
before selecting the ones that are of sufficient quality for further analysis.

To illustrate conformance checking, a simple process is introduced. Figure
shows a doctoral scholarship application process in an informal modeling notation.
This process consists of eight activities: Start Processing, Evaluate Project, Evalu-
ate Academic Record, FEvaluate Advisor CV, Final Evaluation, Accept, Reject, Notify
Results. To begin the process, an applicant has to submit their academic record,
their advisor’s CV, and a description of their proposed project. Once the required
documents are received, the committee would begin by evaluating the submitted
documents. As shown by the AND gateway, the committee can choose to evaluate
the three documents in any order. Following the preliminary evaluation, a final
evaluation is done to consolidate the previous results. This leads to either the ac-
ceptance or rejection of the application. Finally, the applicant is notified of the
result. An example of log trace corresponding to an accepted application could be
(Start Processing, Fvaluate Project, Evaluate Academic Record, Evaluate Advisor CV,
Final Evaluation, Accept, Notify Results).

4.1 Dimensions of Conformance

Through conformance checking, commonalities and discrepancies between a log
and model are quantified. One simple idea would be to consider that a log and
model are conforming with each other if the observed behavior in the log is cap-
tured by the model: This means that a log and model are perfectly conforming if
all the log traces can be fitted to the model. However, this can be easily achieved

Conformance Checking 3

Evaluate
Academic
Record

Evaluate
Advisor CV

Evaluate Final

Project / Evaluation
st |_— % A,

Processing \ Accept

Notify Results Reject

Fig. 2 Imprecise flower model of the doctoral scholarship process

Evaluate
Project

Start Evaluate
" Academic Notify Results
Processing Record

Evaluate
Academic
Record

Fig. 3 Precise but unfitting model of the doctoral scholarship process

Evaluate Evaluate Final
—> Academic |—> ——>| > Accept —> Notify Results

Start Evaluate
Record Advisor CV Evaluation

Processing Project

Fig. 4 Model that overfits one particular possible execution of the doctoral scholarship process

with a model that allows any behavior. Such models do not provide much infor-
mation to the data analyst about the process. This shows that there is a need to
consider conformance with respect to different dimensions.

Currently, conformance is generally considered with respect to three dimensions
— fitness, precision, and generalization.

Fitness relates to how well a model and log fit each other. A log trace perfectly
fits the model if it can be replayed onto the model and corresponds to a complete
model trace. For example, { Start Processing, Evaluate Project, Evaluate Academic
Record, Fvaluate Advisor C'V, Final Evaluation, Accept, Notify Results) perfectly fits
the model in Figure[I]since each of the observed steps can be sequentially replayed
at the model and the trace corresponds to a particular possible way to execute
the process model. However, the trace (Start Processing, Evaluate Project, Evaluate
Academic Record, Final Evaluation, Reject, Notify Results) does not fit the model
because the advisor’s CV (FEvaluate Advisor CV') is never evaluated. This suggests
that the corresponding application has been rejected without proper evaluation.

Precision relates to a model’s ability to capture the observed behavior without
allowing unseen behavior. It is not enough to have a model that is perfectly fitting
with the log since this can be easily achieved with a model that permits any
behavior. Consider the “flower” model in Figure[2] it consists of all the transitions
attached to a state that corresponds to both the start and end state. This means
any sequence involving the connected transitions is permissible by the model.
Though perfectly fitting with the log, such underfitting model does not convey
much useful information to the user. In contrary, the process model illustrated in
Figure [3] is much more precise than the flower model.

4 Jorge Munoz-Gama

1) Replay ' : 2) Comparison . : 3) Alignment

Fig. 5 Three main types of conformance checking approaches

Generalization relates to a model’s ability to account for yet to be observed
behavior. Typically, an event log only represents a small fraction of the possible
behavior in the process. As such, a good model must be generalizing enough so
that unobserved but possible behavior is described. For example, if the model in
Figure {4] was discovered from an event log that contains only the trace (Start
Processing, Fvaluate Project, Evaluate Academic Record, Fvaluate Advisor CV, Final
Evaluation, Accept, Notify Results), then the model would be both perfectly fitting
and precise since all observed behavior is captured by the model and that it does
not allow any unseen behavior. Clearly, there is much unseen behavior that is
very likely to occur in the future, e.g., the rejection of an application. This shows
that while it is important to have precise models, it is also important to avoid
overfitting the observed behavior.

Some authors consider a fourth dimension called simplicity, relating to the
model complexity, i.e., simple models should be preferred over complex models
if both describe the same behavior. However this quality dimension relates only
to the model and therefore is not normally measured by conformance checking
techniques. This dimension is covered in the Automated Process Discovery entry of
this encyclopedia.

Overall, while the three quality dimensions are orthogonal to each other, in
a real life context, one is unlikely to find a pair of log and model that are in
perfect conformance (i.e., perfectly fitting, precise, and generalizing). Often times,
different scenarios may require different conformance levels and prioritization of
the quality dimensions. For example, to analyze the well established execution
paths of a process, an analyst might prioritize fitness over the other dimensions. On
the other hand, if an event log only contains a small number of cases, generalization
would likely to be prioritized over the other dimensions to account for possible
future behavior.

4.2 Types of Conformance
Conformance checking techniques can be applied to understand and quantify these

relationships between a log and model. There is a large collection of approaches
and metrics that are based on different ways to compare a log and model.

Conformance Checking 5

a = Start Processing

b = Evaluate Project

¢ = Evaluate Academic Record
d = Evaluate Advisor CV

e = Final Evaluation

f = Accept

g = Reject

h = Notify Results

Fig. 6 Model M; of the university doctoral scholarship process denoted in Petri net notation

Figure [5] shows that there are three main groups of conformance checking ap-
proaches — replay, comparison and alignment. Replay based approaches replay log
traces onto the model and record information about the conformance during the
replay. Process models can be denoted in different modeling notations, e.g., Busi-
ness Process Modeling Notation (BPMN), Petri nets and Process Trees, and each
representation bias has distinct characteristics, e.g., formalism, and determinism.
However, a proper process model is typically executable so that log traces can be
re-executed stepwise by the model. Comparison based approaches convert both
the log and model into a common representation so that the log and model are
directly comparable. Last but not least, alignment based approaches seek to ex-
plain observed behavior in terms of modeled behavior by aligning log traces with
the model. This brings conformance checking to the level of events and can offer
detailed diagnosis on conformance issues.

5 Key Research Findings

In this section, two conformance checking approaches and three conformance met-
rics are presented.

Ly = [tl = <a’ b7c7d767f’ h>7
l2 = <CL,C,b,€,f,h>,
t3 = <a7 b,d,c,g,e,h)]

Fig. 7 Running example: Event log L,

5.1 Token Replay

Token replay is a replay based conformance checking approach that measures
the fitness between a log and model by replaying log traces onto process models
denoted in the Petri net notation [Rozinat & van der Aalst, 2008].

Consider model M; in Figure[f]and log L1 in Figure[7] Model M is denoted in
Petri net notation so that the squares correspond to the activities in the process,

6 Jorge Munoz-Gama

a = Start Processing

b = Evaluate Project

¢ = Evaluate Academic Record
d = Evaluate Advisor CV

e = Final Evaluation

f = Accept

g = Reject

h = Notify Results

Fig. 8 Model M; after firing activity a

~3 o0
LTI (|
O Lwwu

Fig. 9 Missing token to fire activity e in token replay of trace t2 = (a,c,b, e, f, h)

filled circles correspond to tokens that mark the state of a process instance as
activities get executed and empty circles correspond to places that hold tokens.
To execute an activity, all its input places (i.e., all the places connected by an
incoming arrow to the activity) must have at least one token. This means that
the activity is enabled and can be fired. When an activity is fired, the activity
consumes a token from each of its input places before producing one token at each
of its output places (i.e., all the places connected by an outgoing arrow from the
activity). For example, activity a in model M; in Figure |§| is currently enabled.
If the activity is fired, it would consume the token of its input place and produce
three tokens at each of its three output places as illustrated in Figure[§] As such,
an instance of the process can be recorded by successively firing enabled activities
until no activities are enabled. For a valid Petri net model, an instance is initiated
by having a token at each of the source places (i.e., places without any incoming
arrows) and is deemed to be completed by firing activities until there is only
one token at each of the sink places (i.e., places without any outgoing arrows)
and none at any other places. The sequence of fired activities corresponds to a
complete model trace, i.e., a possible execution of the model.

Log traces can be replayed onto the model by successively firing the activities
related to each event in the log trace at an initiated Petri net model. If the log
trace is perfectly fitting with the model, there should not be any problem with
the replay since the log trace corresponds to a complete model trace. However,
for deviating traces, replay would not be successful due to missing or redundant
tokens. An activity might be marked to be fired in the log trace but is not enabled
in the model due to missing tokens at its input places. Consider the replay of trace
t2 in Li. Starting from the initial state of model M; as shown in Figure [6] the

Conformance Checking 7

~3 0o
Il

- . 00

Fig. 10 Remaining token in token replay of trace t2 = (a,c, b, e, f, h)

firing of activity a, b and ¢ would consume three tokens and produce five tokens in
the process. Figure [J] shows the state of model M; after the firing of the first three
activities and records the number of consumed and produced tokens. According
to trace tg, the next activity to be fired is activity e. However, this is not possible
since one of the input places of activity e does not have any token, i.e., activity e
is not enabled. To continue the replay, the missing token is artificially added into
the empty input place and the number of missing token is incremented. The rest of
trace t2 (activity f and g) can be replayed successively. Figure [10| shows that after
firing activity h, there is a remaining token in the input place of activity d since
this activity was not fired in the replay of trace t2. As recalled, a process instance
is only completed when there is only one token at each of the sink places and
none at any other places. To complete the replay, the remaining token is removed
artificially and the number of remaining tokens is incremented.

Based on the count of each token types consumed, produced, missing, and
remaining (p = 8, ¢ = 8 m = 1, r = 1) the fitness between model M; and trace
to can be computed as:

1 r
fitness(t2, M) = =(1 — %) + §(1 — 5)

N~ N~
[
—
[u—

This fitness metric can be extended to the log level by considering the number
of produced, consumed, missing and remaining tokens from the token replay of all
log traces.

5.2 Cost-based Alignment

The token replay approach can easily identify deviating traces in an event log.
Moreover, the deviation severity can be compared using a fitness metric computed
from the number of produced, consumed, missing and remaining tokens. How-
ever, the token replay approach is prone to creating too many tokens for highly
deviating traces so that any behavior is allowed. This can lead to an overesti-
mation of the fitness. The approach is also specific to the Petri net notation.

8 Jorge Munoz-Gama

Fig. 11 Possible alignments between trace t3 = (a,b,d,c,g,e,h) in L1 and model M; in
Figure@

More importantly, in the case of a deviating trace, the approach does not pro-
vide a model explanation of the log trace. For example, the deviations in trace
ta = (a,c,b,e, f,h) can be explained if it was considered with respect to the com-
plete model trace (a,c,b,d, e, f,h). From this mapping, it is clear that the log trace
is missing the execution of activity d (Evaluate Advisor CV). These mappings from
log traces to model traces were introduced as alignments to address this limitation
[van der Aalst et al., 2012].

Alignments are tables of two rows where the top row corresponds to the ob-
served behavior (i.e., log projection) and the bottom row corresponds to the mod-
eled behavior (i.e., model projection). Each column is therefore a move in the
alignment where the observed behavior is aligned with the modeled behavior. Con-
sider alignment v, in Figure This alignment aligns trace t3 = (a,b,d,c, g, €, h)
in L; and model M; in Figure @ The top row (ignoring >>) yields the trace
ts = (a,b,d,c,g,e,h) and the bottom row (ignoring >) yields a complete model
trace (a,b,d,c,e,g,h). For each move in alignment ~1, the top row matches the
bottom row if the step in the log trace matches the step in the model trace. This
is called a synchronous move. In the case of deviations, a no-move symbol > is
placed in the bottom row if there is a step in the log trace that cannot be mim-
icked by the model trace. For example, activity g is executed before activity e in
trace t3 but model M; requires activity e to be fired before activity g. Hence, a log
move is put where the top row has activity g and the bottom row has a no-move
>>. Similarly, a no-move symbol > is placed in the top row if there is a step in the
model trace that cannot be mimicked by the log trace. For example, activity g is
executed after activity e in the model trace according to model M;. Therefore, a
model move is added where the top row has a no-move > and the bottom row has
activity g. It is also possible that there are invisible transitions in the model which
are not observable in the log. Similar to a model move, there would be a no-move
in the top row and an invisible transition label in the bottom row. In total, there
are four types of legal moves in an alignment: synchronous move, log move, model
move and invisible move.

For a particular log trace and model, there could be many possible alignments
where each represents a different explanation of the observed behavior in terms
of modeled behavior. For example, Figure [L1| shows three possible alignments be-
tween trace t3 and model M; in Figure [} Clearly, alignment v1 and ~3 are better
alignments of trace t3 and model M; than alignment ~2 since they provide closer

Conformance Checking 9

Fig. 12 Default alignment between trace t3 in log L; and model M; in Figurela

explanations with less log moves and model moves. The quality of an alignment
can be quantified by assigning costs to moves. In general, model moves and log
moves are assigned higher costs than synchronous moves because they represent
deviations between modeled behavior and observed behavior. A standard cost as-
signment could be that all model moves and log moves are assigned a cost of 1 and
synchronous moves and invisible moves are assigned a cost of 0. Invisible moves are
normally assigned zero costs as they are related to invisible routing transitions in
the model that are not observable in the log. Under the standard cost assignment,
the costs of the alignments in Figure [11| can be computed as follows:

cost(y1) =04+04+0+0+14+0+14+0=2
cost(y2) =0+04+1+4+04+1+14+0+14+0=14
cost(y3) =0+04+0+04+1+0+1+0=2

This confirms the previous intuition that alignment v, and ~3 are better align-
ments than alignment ~2. Alignments with the minimal costs correspond to opti-
mal alignments that give the closest explanations of log traces in terms of modeled
behavior. Note that there could be multiple optimal alignments for a. particular
log trace. For example, alignment ~; and 73 are both optimal alignments of trace
t3 under the standard cost assignment. Furthermore, optimal alignments are only
optimal with respect to the given cost assignment. For example, alignment ~;
would cease to be the optimal alignment if model moves and log moves of activity
g are assigned a cost of 2 (i.e., cost(y1) = 4) to reflect that having deviations at
the decision part of the process is quite severe. In practise, optimal alignments
can be automatically found by finding the cheapest complete model trace in the
synchronous product of the log trace and model using heuristic algorithms with
proven optimality guarantees, e.g., the A* algorithm [van der Aalst et al., 2012].

Alignments can also be used to compute conformance metrics with respect to
the different quality dimensions.

5.3 Cost-based fitness metric

The fitness of a log trace and a model can be quantified by comparing the cost
of an optimal alignment with the worst case scenario cost [Adriansyah, 2014]. In
the worst scenario, the log trace is completely unfitting with the model. A default
alignment between the two can be computed by assigning all the steps in the log
trace as log moves and all the steps in the complete model trace as model moves.

10 Jorge Munoz-Gama

a|b|d|c|e gl>|h

Fig. 13 Optimal alignments between trace t1, t2, t3 in log L1 and model M; in Figurela

<a,b,c,d e g>

9
<a, b, c> <a,b,c,d> <a, b, c,d, e> <a,b,c,d, e, > <a,b,c,d,e,f h>
d ()= 1)
WO ! !
<a, M e f>

f
<a,b,d,c> <ab,d,c, e> <a,b,d,c,e,g> <ab,dc,eg,h>

cC /1€ | 9 /T h
O———0——0

<a,c, b, d e g>

<a,c,b,d> <acb,d e> <a,c,b,d e f> <acb,de,fh>
N MV (AN N
-/ —/ -/

Fig. 14 Prefix automaton A; of alignments between log L1 and model M; enhanced with
model behavior

Since the optimal alignment minimizes the total alignment cost, the least costly
complete model trace is used. Figure[I2]shows the default alignment between trace
t3 and model M; under the standard cost assignment. The top row (ignoring >>)
yields trace ¢3 and the bottom row (ignoring >>) yields a complete model trace
(a,b,d,c,e,g,h). The cost-based fitness of trace ¢t3 can be computed as:

cost(align(ts, M))
COSt(aligndefault (t37 M))
—1_ 0+0+0+0+1+0+1+0
1+41+1+14+1+14+14+14+1+14+1+1+14+1
2

zl—ﬁ:0.857

fitness(ts, M) =1 —

where a fitness value of 1.0 means that the model and log trace are perfectly fitting.

Conformance Checking 11

5.4 Escaping arc precision

Precision based on escaping arcs can also be computed using alignments [Adriansyah et al., 2012].
As previously mentioned, an imprecise model allows unobserved behavior, i.e., un-
derfitting. For example, consider the Petri net model M; in Figure [6] and the
optimal alignments (under the standard cost assignment) between model M; and
log L in Figure [I3] Clearly, model M; is not perfectly precise as it allows for
behavior that is not observed in log Li. According to model M, activity b, ¢, and
d can be executed in parallel following the execution of activity a. However, none
of the log traces execute activity d after activity a. This imprecision in the model
can be quantified by constructing a prefix automaton using the model projection
of the alignments, i.e., the bottom row of the alignments. As previously presented,
model projections of alignments explain potentially unfitting log traces in terms
of modeled behavior so that they can be replayed on the process model. Figure [14]
illustrates the constructed prefix automaton A; for the alignments between log
L; and model M; (ignoring the circles highlighted in red for now). Each prefix of
the model projections of the alignments identifies a state (represented as circles)
and the number in the states corresponds to the weight. For example, the state
(a) has a weight of 3 because it appears three times in the model projections (all
three alignments start with activity a). On the other hand, the state (a, ¢, b) is only
present in alignment ~¢ and therefore has a weight of 1. The states of automaton
A; represent states reached by the model during the execution of the log. For
any particular state in automaton 4;, there might be activities that are enabled
by the model but are not observed in the log execution. These activities indicate
imprecisions of the model and are called escaping arcs of the model. Escaping arc
states (represented as circles highlighted in red) are added to automaton Ay by
replaying the automaton onto the model and checking for enabled activities at
each state. For example, at state (a) (i.e., after firing activity a), activity b, ¢, and
d are enabled as shown in Figure |8} However, the prefix (a,d) was not observed
in the construction of automaton A; using log Li. This means that there is an
escaping arc from state (a) to state (a,d) and this is added to the automaton by
the state highlighted in red. The rest of the escaping arcs can be added in a similar
way.

With the constructed prefix automaton, escaping arc precision can be com-
puted by comparing the number of escaping arcs with the number of allowed arcs
for all states:

2ses W(s) - [ese(s)|
2ses W(s)- [mod(s)]
3:043:142-04...4+41-1+1-0+1-0

precision(A1) =1 —

=333 31224 vl 241 1411
6
=1- 5=,
55 = 0833

where S is the set of states in automaton 4;, w(-) maps a state s € S to its
weight, esc(-) maps astate s € S to its set of escaping arcs states, and mod(-) maps
a state s € S to its set of allowed states. A precision value of 1.0 indicates perfect
precision, i.e., the model only allows observed behavior and nothing else.

12 Jorge Munoz-Gama

Actual Positive Actual Negative

Predicted True Positive False Positive
Positive (TP) (FP)
Predicted False Negative | True Negative
Negative (FN) (TN)

Fig. 15 Confusion matrix

5.5 Artificial negative events

Another approach to measure precision is through artificial negative events. Ar-
tificial negative events are induced by observing events that did not occur in the
event log. These unobserved events (i.e., negative events) give information about
things that are not allowed to occur in the process. Assuming that the event log
gives a complete view of the process (i.e., a log completeness assumption), the
precision of the process model can be computed using artificial negative events
and the concepts of precision and recall in data mining.

Artificial negative events can be induced by grouping similar traces and then
observing the events that did not occur for every event in the traces. Under the log
completeness assumption, this means that these unobserved events are negative
events that are not allowed to happen by the process [Goedertier et al., 2009).

The process model can then be compared with the log by treating the model
as a predictive model. For a given incomplete event sequence (i.e., an unfinished
process instance), activities that are permitted by the model and observed in the
log are classified as true positives (TP). Activities that are permitted by the model
but are induced as negative events from the log are classified as false positive (FP).
Activities that are not permitted by the model but observed in the log are classified
as false negative (FN). Finally, activities that are not permitted by the model and
are induced as negative events from the log are classified as true negative (TN).
As shown in Figure precision and recall can be computed using a confusion
matrix. Specifically, the precision of the positive class can be computed as:

TP

precision = W

The computed precision value corresponds to the precision of the three quality
dimensions in process mining since it refers to the proportion of modeled behavior
that is observed in the log.

The use of artificial negative events can also be extended to quantify generaliza-
tion and to compute a precision metric that is more robust against less complete
event logs. This is achieved by extending the artificial negative event induction
strategy to assign weights to the induced negative events [vanden Broucke et al., 2014].

Conformance Checking 13

Fig. 16 Process model projected with alignment results

6 Examples of Application

All of the conformance checking techniques presented in the previous section have
been implemented and are applicable to most real-life scenarios. In the following,
the A* cost based alignment technique is applied to a real life dataset to illus-
trate how conformance checking can be applied to gain insights about a process.
This example utilizes the data presented in the ” Conformance Checking: What
does your process do when you are not watching?” tutorial by de Leoni, van Don-
gen, and Munoz-Gama at the ”15th International Conference on Business Process
Management (BPM17)”.

As previously presented, a process model and an event log are required to per-
form conformance checking. The real-life event log is taken from a Dutch Financial
institute and is of an application process for a personal loan or overdraft within a
global financial organization |[van Dongen, 2012]. This means that each case in the
log records the occurred events of a particular loan application. The log contains
some 262,200 events in 13,087 cases. Apart from some anonymization, the data is
presented as it is recorded in the financial institute. The log is merged from three
intertwined sub processes so that the originating sub process of each event can be
identified by the first letter of the activity recorded by the event. In this example,
the log is filtered so that it only contains events from two of the sub processes: the
process which records the state of the application (identifiable by “A_”) and the
process which records the state of an offer communicated to the applicant (identi-
fiable by “O_”). The model has been created with the help of domain experts and
can be assumed to be a realistic representation of the underlying process.

Figure shows the process model projected with the computed alignment
results to allow a visual diagnosis of the conformance results. For each transition,
there is an error bar to show the distribution of synchronous moves (green) and
model moves (pink) for the transition. For example, there are 383 synchronous
moves and 419 model moves related to transition O_DECLINED. The occurrence
and amount of log moves are indicated by highlighting places in yellow and the
size of the highlighted places. Observing the model, one can note that transition
O_SENT_BACK is associated with a large amount of model moves. This transition
is quite an important part of the process as it corresponds to the event where the

14 Jorge Munoz-Gama

financial institute receives a reply from the applicant after a loan offer is made. A
model move of O_SENT_BACK in a log trace means that the system did not register
a reply from the applicant regarding a made offer as required by the process for
the corresponding loan application. Upon investigation of cases with a model move
in O_.SENT_-BACK (e.g., the case with caseld 174036) would show that there are
cases for which an offer was created, sent and accepted without having received
a reply from the corresponding applicant. Whether it was due to a system error,
an employee’s mistake or at worst a fraudulent case, clearly it is in the financial
institute’s best interest to investigate the root cause of this conformance issue.

7 Future Directions for Research

While there have been significant advances in the research of conformance checking
over the recent years, there are still many open challenges and research opportu-
nities. Some of them include:

7.1 Conformance Dimensions

The proposed three quality dimensions (fitness, precision, and generalization) have
been widely accepted but there is still a need for further understanding on how to
interpret and quantify them through metrics. Furthermore, conformance can be
extended beyond the current three dimensions, e.g., log completeness to quantify
whether if the observed event data gives the full picture of the underlying process
[Janssenswillen et al., 2017].

7.2 Big Data and Real Time

Process mining techniques and tools are getting applied to larger and more complex
processes. This means that they have to be scalable to handle the increased size
and complexity. In fact, much of the recent research efforts in conformance check-
ing have been focused on this issue. Related research lines include decomposed
conformance checking [Munoz-Gama, 2016] and online conformance checking for
event streams [Burattin, 2015].

7.3 Conformance Diagnosis and Process Model Repair

It is not enough to just identify conformance issues; good diagnostic and visualiza-
tion tools are crucial in helping the analyst identify and understand the root causes
of the conformance issues. While there has been work done in this aspect of con-
formance checking, e.g., [Buijs & Reijers, 2014|[Munoz-Gama et al., 2014], there is
much more to be done to provide better conformance diagnosis technology, e.g.,
new techniques and user study. Finally, once the differences between the model
and the log have been diagnosed, the user may wish to repair the model in order
to fix such differences; and achieve a model that better describes the real process
executed. This topic is extensively covered in the Process Model Repair entry of
this encyclopedia.

Conformance Checking 15

References

Adriansyah, 2014. Adriansyah, Arya 2014. Aligning Observed and Modeled Behavior. PhD
thesis, Eindhoven University of Technology.

Adriansyah et al., 2012. Adriansyah, Arya, Jorge Munoz-Gama, Josep Carmona,
Boudewijn F. van Dongen, & Wil M. P. van der Aalst 2012. Alignment Based Preci-
sion Checking. In Rosa, Marcello La, & Pnina Soffer (eds), Business Process Management
Workshops - BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012.
Revised Papers, volume 132 of Lecture Notes in Business Information Processing, pages
137-149. Springer.

Buijs & Reijers, 2014. Buijs, Joos C. A. M., & Hajo A. Reijers 2014. Comparing Business
Process Variants Using Models and Event Logs. In Enterprise, Business-Process and Infor-
mation Systems Modeling - 15th International Conference, BPMDS 2014, 19th International
Conference, EMMSAD 2014, Held at CAiSE 2014, Thessaloniki, Greece, June 16-17, 2014.
Proceedings, pages 154-168.

Burattin, 2015. Burattin, Andrea 2015. Process Mining Techniques in Business Environments
- Theoretical Aspects, Algorithms, Techniques and Open Challenges in Process Mining,
volume 207 of Lecture Notes in Business Information Processing. Springer.

Goedertier et al., 2009. Goedertier, Stijn, David Martens, Jan Vanthienen, & Bart Baesens
2009. Robust Process Discovery with Artificial Negative Events. Journal of Machine Learning
Research, 10:1305—1340.

Janssenswillen et al., 2017. Janssenswillen, Gert, Niels Donders, Toon Jouck, & Benoit De-
paire 2017. A comparative study of existing quality measures for process discovery. Inf.
Syst., 71:1-15.

Munoz-Gama, 2016. Munoz-Gama, Jorge 2016. Conformance Checking and Diagnosis in Pro-
cess Mining - Comparing Observed and Modeled Processes, volume 270 of Lecture Notes in
Business Information Processing. Springer.

Munoz-Gama et al., 2014. Munoz-Gama, Jorge, Josep Carmona, & Wil M. P. van der Aalst
2014. Single-Entry Single-Exit decomposed conformance checking. Inf. Syst., 46:102—122.
Rozinat & van der Aalst, 2008. Rozinat, Anne, & Wil M. P. van der Aalst 2008. Conformance

checking of processes based on monitoring real behavior. Inf. Syst., 33(1):64-95.

van der Aalst, 2013. van der Aalst, Wil M. P. 2013. Mediating between modeled and observed
behavior: The quest for the “right” process: Keynote. In RCIS, pages 1-12. IEEE.

van der Aalst, 2016. van der Aalst, Wil M. P. 2016. Process Mining - Data Science in Action.
Springer.

van der Aalst et al., 2012. van der Aalst, Wil M. P., Arya Adriansyah, & Boudewijn F. van
Dongen 2012. Replaying history on process models for conformance checking and perfor-
mance analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(2):182-192.

van Dongen, 2012. van Dongen, B.F. 2012. BPI Challenge 2012.

vanden Broucke et al., 2014. vanden Broucke, Seppe K. L. M., Jochen De Weerdt, Jan Van-
thienen, & Bart Baesens 2014. Determining Process Model Precision and Generalization
with Weighted Artificial Negative Events. IEEE Trans. Knowl. Data Eng., 26(8):1877-1889.

	Synonyms
	Definition
	Cross-references
	Overview
	Key Research Findings
	Examples of Application
	Future Directions for Research

