
Predicting Process Behavior Meets Factorization Machines

Wai Lam Jonathan Leea, Denis Parraa, Jorge Munoz-Gamaa, Marcos Sepúlvedaa
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Abstract

Predictive business process monitoring methods use datasets of completed cases related to a process to
predict the behaviour of running cases. To handle the large amounts of available event data, recent works
have turned to deep learning techniques and have achieved fairly accurate results. However, results from these
techniques are often difficult to interpret and explain. In the area of Recommender systems, factorization
models have been an important class of predictive techniques due to its scalability and ability to infer
latent features. Motivated by research in Recommender systems, this paper presents a predictive model
that combines matrix factorization techniques from Recommender systems and knowledge from Business
Process Management to learn interactions between latent features that can be used to predict the next
event of an ongoing case. Evaluation on two real-life datasets from a Dutch Financial Institute and Volvo IT
Belgium shows that the approach yields results that are comparable and at times superior to state-of-the-art
techniques such as neural networks, yielding at most a precision of 0.87 for next event predictions.

Keywords: Recommender Systems, Business Process Management, Predictive Business Process
Monitoring

1. Introduction

The execution of a process in real-life can be highly unpredictable: unforeseen events can occur to cause
deviations from the prescribed procedures, workarounds might be adopted to bypass insufficiencies of the
established protocols, and concept drifts can lead to a process to change over time. Yet, the capability
to predict future behavior of a business process is important (Evermann et al., 2016b). Being able to
identify and accurately predict different factors of ongoing process instances helps facilitate better decision
making such as resource allocation, alert of compliance issues, and recommendations to take different actions
(Kang et al., 2012). This motivates predictive business process monitoring, a family of online process
monitoring methods that seeks to predict the unfolding of running cases based on models learnt through
historical event logs (Maggi et al., 2014).

However, despite the structured nature of event data, prediction tasks for processes are difficult. Logs
of event data (event logs) often only contain a small portion of the possible executions permitted by the
process. Moreover, as with many branches of data science, it suffers from the absence of negative samples;
only positive examples of how the process can be executed are provided. This has motivated research into
using well-known sophisticated prediction models, e.g., Long Short-Term Memory (LSTM) neural networks
(Tax et al., 2016; Evermann et al., 2016b), to predict future process behavior using historical event data.

Existing approaches can be divided into two kinds: explicit process representations where the process
model corresponding to the process is considered explicitly in the prediction model, and implicit process
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representations where the process model is implicitly reflected in the prediction model (Evermann et al.,
2016b). The approach proposed by this paper sits between the two ends, where features of a process model
can be explicitly considered in the prediction model while latent features are also inferred from the historical
data. This means that documented process models and domain knowledge as well as latent variables can be
leveraged to improve prediction.

One research area where models with latent representations have had an important effect is Recommender
systems (RS) (Koren et al., 2009; Koren, 2008; Liu & Wu, 2016). In Recommender systems, one of the major
challenges is the small amount of information on consumed items per user compared with the catalogue of
millions of items on offer (Khusro et al., 2016); one can imagine that an average user of Amazon hardly
consumes a significant amount of the millions of items that are on offer. This fundamental challenge of high
sparsity has motivated different machine learning techniques that are scalable to the large volume of data
(Koohi & Kiani, 2017). In particular, factorization models have been an important class of techniques due
to its ability to infer latent features from a highly sparse dataset to facilitate prediction and recommendation
tasks. Similarly, a case in a process represents a small portion of the possible behavior in the business process
(van der Aalst, 2016). This common challenge of highly sparse data in the two research areas motivated
our exploration of factorization models in Recommender systems for predictive tasks in a business process
setting. In particular, Factorization Machines (FM) is chosen for its ease of incorporating different types of
input data as “context” for the prediction tasks, its computational efficiency as compared to other similar
methods, e.g., Support Vector Machine (SVM), and most importantly, its ability to infer latent features
from a highly sparse dataset.

Overall, our contributions can be summarized as follows:

• The identification of a promising predictive model from the field of Recommender systems that meets
the requirement for the next event prediction task in a business process context.

• A framework that incorporates Factorization Machines for the next event prediction task of an ongoing
case in a process in Section 5.2.

• Leveraging the assumption of an underlying process in event data to improve prediction precision.
This involves the definition of a novel representation of event data to enable the prediction task in
Section 5.1.

• Address the absence of negative feedback information in training dataset to improve prediction preci-
sion in Section 5.3.

• Empirically validating the effectiveness of the proposed approach by comparing experimental results
between the approach and existing state-of-the-art approaches on two real-life datasets in Section 7.

The rest of the paper is structured as follows: Section 2 provides a brief background for the paper. Next,
Section 3 presents the related work in the literature. This is followed by the preliminaries in Section 4.
Section 5 presents the proposed predictive model and the representation of event data to enable the prediction
task. The experimental setup and results are presented in Section 6 and Section 7 respectively. The paper
ends with the conclusions and future work in Section 8.

2. Background

In this paper, we present a predictive model motivated by the research in Recommender systems –which
addresses data sparsity with latent factor models– and combined with techniques from Business Process
Management. In this section, we provide a brief background to the two research areas.

2.1. Recommender systems

Recommender systems are software tools and techniques providing suggestions for items to be of use to
a user (Ricci et al., 2015). The suggestions relate to different decision-making process such as what items
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to buy, which movie to watch, or which song to listen to. Therefore, one important aspect is to accurately
predict a user’s preference or view towards an item that has yet to be consumed by him/her based on the
user’s previous item consumption. As such, it is easy to see the similarity between the task of predicting
the next event of an ongoing case in a business process and the predicting the preference of a user towards
an unconsumed item (the ongoing case can be seen as the user and the executed events of the ongoing case
can be seen as the previously consumed items).

2.2. Business Processes Management (BPM)

The BPM research discipline uses various tools, techniques, methods and methodologies to support
business processes and to take advantage of improvement opportunities Dumas et al. (2013). Traditionally,
BPM has been a model-driven discipline where processes are analyzed through model representations e.g.,
BPMN, Petri nets, and etc. However, with the rapidly increasing availability of event data about processes,
there has been a gaining momentum of adapting data-driven techniques to improve processes. In particular,
the discipline of Process Mining has emerged in the recent years as the driving force to adapting data-driven
approaches to improving processes (van der Aalst, 2016).

Next, the related works in the existing literature are presented.

3. Related work

Similar to the previous section, to structure the related work, we present the related work from the two
areas, analyzing the state-of-the-art techniques for the prediction task of future events based on a sequence
of previous events.

3.1. Recommender systems

One popular family of predictive models are the factorization models, which use matrix factorization
techniques to learn latent featurest that can be used for prediction tasks (Koren et al., 2009). Intuitively,
this could appreciated with the example of predicting movie ratings given by different users. Unobserved
user characteristics such as his/her preference for romantic movies can influence the rating that a user gives
to a movie. In general, matrix factorization techniques aim to learn these “latent” features to facilitate
prediction tasks. In the typical factorization model, such as the SVD++ model (Koren, 2008), the order in
which the previous items are consumed is not considered, i.e., the time factor. However, this is fundamental
in the context of a business process as different situations can often require different execution order of the
same set of activities. Hence, we focus on the much more limited list of factorization models that take into
the time factor of previous consumptions.

The Factorizing Personalized Markov Chain (FPMC) model ranks products based on the last purchases
of the user (Rendle et al., 2010). While matrix factorization methods are used to learn latent features from
observed data, Markov chain methods model sequential behavior by learning a transition matrix over items
that is used to predict a user’s future items based on his/her recent actions. While modeling sequential
behavior using Markov chain methods is appropriate in the recommender system context where the average
user only has one or two previous actions, it is much more difficult in the context of a process where the
average case lengths can be very long. There are several similar sequential recommenders that capture
sequential behavior using Markov chain methods (He et al., 2016; Natarajan et al., 2013; He & McAuley,
2016).

Other than using Markov chain methods, one can learn item embeddings by factorizing item co-
occurrence. The co-factorization model, CoFactor, simultaneously factorizes both the observed user-item
interaction matrix and the item-item co-occurrence matrix so that co-occurrence relations between items
can be learnt (Liang et al., 2016).

Point of interest (POI) recommendation is another area where factorization models are used for data
that have sequential information in the form of temporal information, e.g., the sequence of places that a user
visits in a period of time. In (Cai et al., 2018), a Feature-Space Separated Factorization Model (FSS-FM)
is proposed that the POI feature spaces as separated slices.
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In this paper, we adapt the factorization model, Factorization Machine (FM), as the predictive model
(Rendle, 2010). FMs are a general predictor that works with any real valued feature vector. It can been
shown that the FM is a generalized model that can mimic many of the existing state-of-the-art factorization
model, e.g., FPMC and SVD++. By identifying the common challenge in tackling data sparsity between
Recommender systems and event prediction in BPM, factorization machine is the appropriate base model
due to its ease of incorporating different types of input data as “context” for the prediction tasks, its
computational efficiency, and its ability to learn latent features from sparse data. To the best of our
knowledge, there has yet to be any applications of FMs for prediction tasks in the context of a business
process.

3.2. Recommendation in Business Processes Management (BPM)

Predictive techniques are one of the important subareas to a data-driven approach to improving processes.
Whereas in the past, process prediction research has been focused on prediction of process outcomes such as
remaining time to completion, there have been a number of recent work on prediction of the next event in a
process (Breuker et al., 2016; Evermann et al., 2016a; Le et al., 2012; Lakshmanan et al., 2015; Ceci et al.,
2014; Unuvar et al., 2016). These work can be best separated by the way in which the underlying process is
represented in the predictive model. Specifically, there are those that use an explicit model representation
and those that use an implicit model representation.

Works that use explicit model representations include state-transition model, HMM (hidden Markov
models), or PFA (probabilistic finite automatons) models. In the paper (Lakshmanan et al., 2015), a five
step approach is proposed to predict the next event of an ongoing case. First, a process model is discovered
from an event log. Second, a decision tree is learnt using the process model. Third, given a partial trace of a
running process instance, the decision tree is used to create an instance-specific markov chain for next event
predictions. The fourth and fifth step consider parallelism in the model to enhance next event predictions.
Similarly, in the paper (Unuvar et al., 2016), different representations of executed traces are used to build
decision trees as prediction models.

One limitation of markov models is the limited coverage of observed traces in the event log compared
with the possible process behavior. While higher-order markov chains promise better accuracy, many of
the combinations at the state-transition matrix of higher-order markov chains would not be observed in the
event data. This led to the use of lower-order markov models that only consider the previously executed
event.

The Markov Sequence Alignment (MSA) approach proposed in the paper (Le et al., 2012) alleviates the
issue by supporting a markov model with sequential alignment techniques. In MSA, each trace prefix is
modeled as a state and the next activity as a transition in a state-transition matrix. This means that a state
transition matrix can be built from the observed prefixes and their next events in the event log. Assuming
that similar sequences are likely to produce the same outcome, predictions for a running case that has
reached a state not contained in the state-transition matrix are made by referring to most similar observed
cases. Similarity between traces is computed using string edit distance. The approach is evaluated on two
datasets from a telecommunications company with reported optimal accuracies on next event prediction to
be at ∼25% and ∼70% respectively.

RegPFA (Breuker et al., 2016) uses a probabilistic finite automaton (PFA) to allow the future hidden
state be a probabilistic function of both the previous hidden state and the last observed event (which itself
is a probabilistic consequence of the previous hidden state). RegPFA uses an EM algorithm to estimate the
model parameters of the PFA. The evaluation uses data from the 2012 and 2013 BPI Challenges. We note
that this uses an explicit model representation and the work does not allow the aggregation of other features
observed in an event log such as the resources, time, and etc.

Limitations of using explicit model representation include the requirement of prior assumptions about
the model and that it can be difficult to extend the predictive model to consider the diverse information
observed in an event log. Also, models such as decision trees can suffer from overfitting. With the exception
of the use of decision trees, all the mentioned approaches only consider the activity attribute of events. This
means the predictive models will have redesigned to consider new event attributes.
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On the other hand, model can be built in an implicit manner. This dispenses the need to form any ex-
ante assumptions. Existing approaches are focused on the use of different variants of neural networks, e.g.,
recurrent neural networks (Evermann et al., 2016b; Tax et al., 2016). These approaches have demonstrated
promising results. In (Tax et al., 2016), it is shown that a long short term memory (LSTM) predictive
model can reach a prediction result of 0.7669 in terms of Damerau-Levenshtein Similarity (a result of 1
means perfect precision). The Damerau-Levenshtein Similarity compares two strings by the number of
operations required to transform one into the other. In this case, it is the number of operations required to
transform the string representation of the predicted result to the string representation of the executed events
in the case. Similarly, in (Evermann et al., 2016b), it is shown that a long short term memory (LSTM)
predictive model can reach a precision of 85.9% in predicting the next activity of an ongoing case. However,
training neural network models require significant amount of computing resources and available data. This
can be challenging a real-life context.

It is clear that research in predictive models that rely on implicit model representations is still quite
recent and has been mostly focused on neural network techniques (Tax et al., 2016; Evermann et al., 2016a).
By identifying the common challenge in tackling data sparsity between Recommender systems and event
prediction in BPM, this paper explores the adaptation of matrix factorization based predictive models which
can learn latent features from sparse data. Through leveraging the assumption of an underlying process,
event data can be modeled in a meaningful representation. Moreover, additions to the input data are made
so that negative information can be incorporated into the training of the predictive model. The proposed
model is supported by experimental results which show significant improvement over the general user-item
based data representation.

There have been other works in the field of BPM that integrate recommender system techniques. For
example, collaborative filtering is used by extending the Algorithm Recommender System (ARS) approach
(Misir & Sebag, 2013) to recommend process discovery algorithms to users (Ribeiro et al., 2014). However,
this work tackles the next event prediction problem rather than recommending algorithms.

4. Preliminaries

This section introduces basic concepts used in later sections of the paper.

4.1. Basic notation

Definition 1 (Multisets). Let X be a set, a multiset of X is a mapping M : X → N. B(X) denotes the
set of all multisets over X. Let M and M ′ be multisets of X. M contains M ′, denoted M ≥M ′, if and only
if ∀x∈XM(x) ≥M ′(x). The union of M and M ′ is denoted M +M ′, and is defined by ∀x∈X(M +M ′)(x) =
M(x)+M ′(x). The difference between M and M ′ is denoted M−M ′ and is defined by ∀x∈X(M−M ′)(x) =
(M(x)−M ′(x)) max 0.

Note that (M −M ′) +M ′ = M only holds if M ≥ M ′. For sets X and X ′ such that X ′ ⊆ X, we consider
every set X ′ to be an element of B(X), where ∀x∈X′X ′(x) = 1 and ∀x∈X\X′X ′(x) = 0.

Definition 2 (Sequence). Let A be a set. A∗ denotes the set of all sequences over A and σ =
〈a1, a2, . . . , an〉 is a sequence of length n. 〈〉 is the empty sequence and σ1 · σ2 is the concatenation of
sequences σ1 and σ2. For 0 < k < n, hd(σ, k) = 〈a1, a2, . . . , ak〉 is the prefix of length k of sequence σ and
tl(σ, k) = 〈ak+1, . . . , an〉 is its suffix. Let σ(k) denote the element at the k-index of σ.

For example, for a sequence σ = 〈a, b, c, d, e, f〉, hd(σ, 2) = 〈a, b〉, tl(σ, 2) = 〈c, d, e, f〉 and σ(1) = a.

Definition 3 (Function domains and ranges). Let f ∈ X 9 X ′ be a (partial) function. With
dom(f) ⊆ X we denote the set of elements from X that are mapped onto some value in X ′ by f .
With rng(f) ⊆ X ′ we denote the set of elements in X ′ that are mapped onto by some value in X, i.e.,
rng(f) = {f(x) | x ∈ dom(f)}.
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Label Activity Note

a A Create Application Creation of new application.
b A Denied Application rejected by bank.
c O Accepted Client acceptance of loan.
d O Cancelled Offer has been canceled due to lack of reply from client.
e O Create Offer Creation of loan offer.
f O Sent (mail and online) Offer sent through mail and the online channel.
g O Sent (online only) Offer sent through the online channel.
h W Call incomplete files Call client due to incomplete documents.
i W Call after offers Call client after sending offer.
j W Assess potential fraud Assess application for fraud

Table 1: Details on the activities of the running example

L = [σ1 = 〈a, e, f, i, j, b〉,
σ2 = 〈a, e, f, i, j, c〉,
σ3 = 〈a, e, f, i, h, c〉,
σ4 = 〈a, e, f, i, h, b〉,
σ5 = 〈a, e, f, i, b〉,
σ6 = 〈a, e, g, i, c〉,
σ7 = 〈a, e, g, i, d〉,
σ8 = 〈a, j, e, g, i, h, c〉,
σ9 = 〈a, e, f, i, h, h, c〉,
σ10 = 〈a, e, g, i, h, h, h, h, h, c〉]

Figure 1: Running example: Event log L1

Definition 4 (Functions on sequences and multisets). Let f ∈ X 9 X ′ be a (partial) function, let
σ ∈ X∗ be a sequence of X, and let M ∈ B(X) be a bag of X. With f(σ) we denote the application of f on all
elements in σ, e.g., if dom(f) = {x, z}, then f(〈x, x, y, y, y, z〉 = 〈f(x), f(x), f(z)〉. With f(M) we denote
the application of f on all elements in M , e.g., if dom(f) = {x, z}, then f([x2, y3, z]) = [f(x), f(x), f(z)].

4.2. Event logs

Information related to executed events in a process can be extracted as an event log. An event log is a
set of traces. Each trace describes a particular case, i.e., a process instance, in terms of the occurred events.

Let E denote the universe of all identifiable process events. A process event can have different attributes
that provide additional information about the event. We denote UA as the universe of attribute names.
Given an attribute attr ∈ UA, we use the partial function πattr : E 9 dom(attr) to represent the value of
attr for a process event from its domain dom(attr). In this paper, we assume that UA includes at least the
following attributes for a process event e ∈ E : case, which indicates the process instance at which e was
executed, act, which denotes the activity that e corresponds to and time to indicate the timestamp related
to the event.

Definition 5 (Trace, Event log). Let E denote the universe of all identifiable process events. A trace is
a finite sequence of events σ ∈ E∗ such that each event occurs only once and time is non-decreasing, i.e., for
1 ≤ i < j ≤ |σ|: σ(i) 6= σ(j) and πtime(σ(i)) ≤ πtime(σ(j)). Let UT be the universe of all possible traces.
An event log is a set of traces L ⊆ UT .
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Events can store different information related to the process such as resources, timestamps, or additional
data elements recorded with the event log. These information are referred attributes. Given a trace σ ∈ L
and an attribute attr ∈ UA, we can get the attribute value of each event in the trace by applying πattr(σ) ∈
attr∗ to the sequence.

Consider the event log L1 in Figure 1. Log L1 is a simplification of the real-life dataset BPIC2012 (van
Dongen, 2012) which records the events of a loan application process at a Dutch Financial Institute. Simpli-
fication is done by selecting only a few cases and only include events of a subset of activities. Furthermore,
for simplicity and space, we refer to each event by its activity attribute with each activity being represented
by a corresponding letter label. Table 1 presents the mapping between labels and activity, as well as a short
description of each activity.

Consider the trace σ1 = 〈a, e, f, i, j, b〉. This sequence describes the activities that are executed in a
particular loan application. It is initiated with A Create Application. Then a loan offer is created (O Create
Offer). The offer is sent to the client by mail and online (O Sent (mail and online). A bank employee calls
the client about the offer (W Call after offers). However, the case is then assessed for fraud (W Assess
potential fraud) and the loan application is ultimately denied (A Denied).

Often times, given an ongoing case, it is desirable to have a recommendation of the next activity to execute
based on the past events and specific target variables. For example, for the loan application process captured
by the running example in Figure 1, it is desirable for the institute to know as soon as possible whether
if the loan application should be denied and to ensure that applicants would accept the loan conditions
once it is offered by the institute. Moreover, while maximizing this acceptance rate, it is also desirable to
minimize the usage of resources. Given an ongoing case σ = 〈a, e〉 with an offer created, the institute can
choose to execute various different activities, e.g., activity f (O Sent (mail and online)), activity g (O Sent
(online only)), activity j (W Assess potential fraud). An activity recommendation can be made based on
the executed activities and the target variable, e.g., occurrence likelihood.

Definition 6 (Next activity prediction). Let UT be the universe of all possible traces and let L ⊆ UT
be an event log. Let σ ∈ L be a trace from log L and let σhdk = hd(σ, k) and σtlk = tl(σ, k) be the prefix and
suffix of length k of trace σ respectively.

For 1 ≤ k < |σ| and an activity a ∈ Uact, we predict its occurrence likelihood based on the k prefix of
trace σ, σhdk , predact(σ

hd
k , a) ∈ [0, 1].

Consider trace σ1 ∈ L1 in Figure 1. For k = 2, the activities f , g and j are evaluated as candidates
to be recommended for the trace prefix σ1

hd
k . Using a predictive model, we find that predact(σ

hd
k , f) >

predact(σ
hd
k , g) > predact(σ

hd
k , j). This means that activity f should be recommended based on its occurrence

likelihood.

Definition 7 (Activity recommendation). Let UT be the universe of all possible traces and let L ⊆ UT
be an event log. Let σ ∈ L be a trace from log L. For 1 ≤ k < |σ|, let σhdk = hd(σ, k) be the prefix of length
k of trace σ.

• An activity a ∈ UA is recommended if the prediction score predact(σ
hd
k , a) is higher or equal to the

prediction score of any other possible activity prediction predact(σ
hd
k , a′).

• recact(σ, k) ∈ E∗ → UA is a deterministic mapping that assigns any valid case prefix to an activity
recommendation.

Consider again trace σ1 ∈ L1 in Figure 1. For k = 2, one possible k activity recommendation based on
occurrence likelihood could be recact(σ, 2) = f , i.e., activity f is recommended. Coincidentally, activity f
is the next activity executed at case σ1. We note that a model could be trained to recommend activities
based on different target variables, e.g., execution time and cost.

In the following section, we introduce factorization models as the class of models to be used for activity
recommendations on event data. Specifically, we focus on factorization machine which is a general predictor
which works with any real valued feature vector.

7



Figure 2: Overview of PMRec

5. Factorization machine for process prediction

In this section we describe in detail our proposed Process Mining Recommender (PMRec hereinafter).
As shown in Figure 2, there are three main parts to the process. First, an event log consisting of traces
is converted into a “step log” representation that will allow cases to be represented as vectors and a log
as an input matrix. Other data attributes recorded with the event data can also be added as additional
features to the matrix. Second, to tackle the underlying limitation of event logs in lacking negative samples,
artificial negative samples are added to the input matrix to increase prediction accuracy. After training the
factorization machine predictive model PMRec with the input matrix, next activity predictions can be made
for running cases of the corresponding process.

In the following, we first introduce the novel representation of process events. Second, we present
factorization machine as the prediction model from recommender system to be adapted for the next activity
prediction task. We also explain the computation details of the prediction task. Third, we present the
addition of negative samples to deal with the underlying limitation of event logs in terms of data completeness
to increase prediction accuracy.

5.1. Process event representation

Typically, traditional recommender systems disregard any sequential information on users’ item con-
sumption and represent the consumed items as a vector where consumed items are assigned with their
corresponding rating Rendle et al. (2010). Conversely, MF-based sequential recommenders such as the
FPMC model consumed items sequences as tensors where each slice of the tensor marks the probabilities of
consuming particular items given the history of consumed items for each user.

While modeling sequential behavior using Markov chain methods is appropriate in the recommender
system context where the average user only has one or two previous actions, this is much more difficult in
a business process context where the average case lengths can be long. Moreover, the execution order of
activities in a process is often much more important since different execution orders can affect related decision
makings such as resource allocation. This motivates the emphasis in directly capturing the dependencies
between activities in the data representation so that information of the control flow, i.e., the execution order
of activities, can be incorporated into the predictive model. One idea is to model an event sequence as a
series of “steps”.

8



Let L ⊆ UT be an event log. Each trace σ ∈ L can be described by a set of steps where each step is
composed of a sequence of events e ∈ σ that occurred in the trace.

Definition 8 (Process step). Let E ⊆ E be a set of events. For k > 1, a k-process step is a k tuple
(e1, e2, . . . , ek) where each element ei ∈ E is an event. A k-process step set S(k) = {(e1, e2, . . . , ek) | ei ∈
E for all 1 ≤ i ≤ k} contains all k-process step composed of events in E.

For a process with an activity set A ⊆ Uact where each activity a ∈ A can be executed in different lifecycles
of the set Lf ⊆ Ulifecycle, it has a set of possible events E ⊆ UE where |E| = |A| × |Lf |. E contains all

events with all possible combinations of attributes act ∈ A and lifecycle ∈ Lf . We denote S
(2)
activity, lifecycle

as the set of 2-process steps from E. For simplicity, we consider events with only activity attributes and

refer to S
(2)
activity as S(2) for the rest of the paper.

Definition 9 (Step case, Step log). Let E denote the universe of all identifiable process events and let
UT be the universe of all possible traces. Let L ⊆ UT be an event log. Let A ⊆ Uact be the set of possible
activities for the underlying process of log L. Let E ⊆ E contains all events with all attributes act ∈ A. Let
S(2) = E × E be the 2-process step set.

Let σ ∈ L be a particular case of length |σ| = n. step(σ, S(2)) = {〈ei, ej〉 | ∃sk∈S(2)πact(sk) =
πact(〈ei, ej〉) ∧ ei ∈ σ ∧ ej ∈ σ for all 1 ≤ i < j < n} is a step version of case σ, i.e., a step case.

step(L, S(2)) = {step(σ, S(2)) | σ ∈ L} is the step version of log L, i.e., a step log.

We note that an artificial start and end events can be appended to the ends of each case so that all cases in
the log can be represented as a step case.

Given a step log step(L, S(2)), it is clear that it can be represented as a matrix of m rows and n columns
where m = |L| is the number of cases in log L and n = |S(2)| is the number of possible steps in 2-process
step set S(2).

5.2. Factorization Machine

Factorization Machines (FM) is a model class that combines the advantages of Support Vector Machines
(SVM) with factorization models (Rendle, 2010). It is a general predictor that works with any real valued
feature vector. In the field of recommender systems, FMs can be seen as the generalized model of the
factorization models such as Matrix Factorization, SVD++, and Factorized Personalized Markov Chains
(FPMC) due to its ability to mimic these models by specifying the input data (i.e., the feature vectors).

The mechanism of FMs is that interactions between variables are modeled using factorized parameters.
This means that interactions can be estimated even in problems with high sparsity. Furthermore, FMs
are computationally efficient since the model equation can be reduced to linear complexity in both k (the
number of factors) and n (the number of features). This means that prediction time is linear and the number
of parameters to learn during the training phase is reduced.

Definition 10 (Factorization machine (Rendle, 2010)). Let x ∈ Rn be a feature vector of dimension
n. Let 〈·, ·〉 be the dot product of two vectors of size k ∈ N+

0 :

〈vi, vj〉 =

k∑
f=1

vi,f · vj,f

The model equation for a factorization machine of degree d = 2 is defined as:

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi, vj〉xixj

where w0 ∈ R is the global bias, w ∈ Rn models the strength of the i-th variable and V ∈ Rn×k models
the interaction between the i-th and j-th variable.
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Note that k is a hyperparameter that defines the dimensionality of the factorization. This means that
instead of using the model parameter wi,j ∈ R for the interaction between two features, it is estimated in
a factorized manner. This is the key point that reduces the complexity for learning the model parameters
from O(n2) to O(kn).

The model parameters w0, w and V can be learnt by gradient descent methods such as stochastic
gradient descent (SGD). The gradient of the FM model, considering up to 2-way interactions, is:

∂

∂θ
ŷ(x) =


1 if θ is w0

xi if θ is wi

xi
∑n
j=1 vj,fxj − vi,fx2i if θ is vi,f

Given that cases in an event log can be represented as in vector form, process steps can be used as model
features in FMs to predict occurrence likelihood of activities at ongoing cases.

However, one common limitation of training datasets is the lack of negative samples. This limitation
can be addressed by defining a set of artificial negative samples for each case prefix, as introduced in the
Bayesian Personalized Ranking model (Rendle et al., 2009).

5.3. Artificial negative samples

As previously mentioned, one limitation of the datasets used for training predictive models is the lack
of negative feedback information. This is present in event logs as well; prohibited events are not recorded
in the event data. This is made more complicated with the fact that unobserved process behavior does not
mean that the behavior is prohibited but might just have not happened yet.

However, one approach to address this is to make an assumption of completeness where the event log is
assumed to contain all observed behavior to a certain degree. In (Goedertier et al., 2009; vanden Broucke
et al., 2014), it was reported that by making an explicit completeness assumption, negative events can be
generated as the events that did not occur at a certain point in time of a case. In (Goedertier et al., 2009),
negative events are used to discover process models that are more precise from dataset related to a process.
We adopt the same idea to process steps to provide negative information to the predictive model.

Definition 11 (Negative process step). Let E denote the universe of all identifiable process events and
let UT be the universe of all possible traces. Let L ⊆ UT be an event log. Let A ⊆ Uact be the set of possible
activities for the underlying process of log L. Let E ⊆ E contains all events with all activity attributes a ∈ A.
Let S(2) = E × E be the 2-process step set.

Let σ ∈ L be a particular case of length |σ| = n. For 1 ≤ k < n, the set of negative events for case prefix
σhdk is {〈e1, e2〉 | πact(e1) = πact(σ(k))∧πact(e2) ∈ A \ {πact(σ(k+ 1))}}, i.e., the set of possible steps except
for the observed next process step.

Consider case σ5 = 〈a, e, f, i, b〉 in Figure 1. The step case representation is step(σ5, S
(2)) =

{(a, e), (e, f), (f, i), (i, b)}. For the case prefix σ5
hd
2 = 〈a, e〉, the set of negative steps consists of

{〈e, a〉, 〈e, b〉, 〈e, c〉, 〈e, g〉, 〈e, h〉, 〈e, i〉, 〈e, j〉}.

5.4. Training input matrix

As previously mentioned, events can store different information related to the process. These information
can be specified as feature vectors for a FM model for prediction tasks. One of the most important features
of event data related to processes is the causal relations between different activities. This is often described
through business process modeling notations such as BPMN (Weske, 2012), Petri Nets (Murata, 1989), and
YAWL (ter Hofstede et al., 2010). With process steps, it is possible to explicitly specify causal relations
between activities of a process model as feature vectors at a FM model and relate information event data to
these features using step cases. This forms a fundamental part of PMRec where user can leverage information
from prior process models to improve predictive prediction of PMRec. However, in this paper we would like
to evaluate the performance of the basic predictive model and therefore we do not select features using a
prior process model.
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Figure 3: Example training input matrix of case σ1 in Figure 1 under input matrix variant “Step”

Other than the causal relations between activities, other information such as time, number of executed
events, and resources can be incorporated into PMRec. Consider case σ1 in Figure 1. The step case
representation would be step(σ1, S

(2)) = {〈a, e〉, 〈e, f〉, 〈f, i〉, 〈i, j〉, 〈j, b〉}. This case can incrementally added
into the input matrix step by step.

Consider a negative sample size of 3, Figure 3 shows how feature vectors can be created for the above
training input. Here, there are |CaseId| binary indicator variables (red) that represent the current case
(caseID 1). The next group of indicator variables (blue) contains information about the taken steps of the
case. For each row, the variables in this group are normalized so that they sum up to 1. For example, for the
first four feature vectors, x(1), . . . , x(4), the set of taken steps contains only {〈a, e〉}. Finally, the last group of
binary indicator variables (green) records the possible next step. For example, given the taken step {〈a, e〉},
the actual next step is 〈e, f〉. This means that a 1 should be assigned to the variable 〈e, f〉. We also pick
three negative samples {〈e, c〉, 〈e, d〉, 〈e, e〉} from the set of possible steps {〈e1, e2〉 | πact(e1) = e∧ πact(e2) ∈
A \ {f}}. As such, the feature vectors x(1), x(2), . . . , x(4) are created. For the target y(1), y(2), . . . , y(4), 1
is assigned if the corresponding feature vector is associated with the actual next step. Otherwise, a 0 is
assigned.

Next, we present the approach to evaluate the performance of PMRec.

6. Experimental Method

In this section, we present the datasets and methodology used for the evaluation of the proposed approach.
To obtain evaluation results that are comparable to the state-of-the-art for the next event prediction task,
we use the same datasets (the BPI Challenge 2012 and 2013 datasets (van Dongen, 2012; Steeman, 2013a,b))
and similar experimental approaches as detailed in (Evermann et al., 2016b; Tax et al., 2016).

6.1. Data

The BPI Challenge 2012 dataset (van Dongen, 2012) is a real-life dataset from a Dutch Financial Institute.
Specifically, the event data are related to a loan application process such that each case is of a particular
loan application. The dataset contains events related to 13,087 cases. Furthermore, it can be separated
into three subprocesses. Subprocess A relates to the states of the application itself, subprocess O relates
to the states of an offer communicated to the customer, and subprocess W relates to the states of work
items that occur during the approval process. The first letter of each task name can be used to identify the
subprocess that it relates to. The BPI Challenge 2013 datasets (Steeman, 2013a,b) are real datasets from
the incident and problem management process at Volvo IT Belgium with 7,554 and 2,306 cases respectively.
These incidents and problems are related to the IT-services delivered and/or operated by Volvo IT such
as incidents that may disrupt plant production (Vehicles / Product) and result in lost units of production.
The problem management process dataset is comprised of two separate datasets where one is related to
cases whose problem is still open at the time of data collection and the other is related to cases with closed
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Dataset Number of activities Number of events

BPI2013.Incidents 13 65533
BPI2013.Problems 7 7460
BPI2012 (completion events) 24 164506
BPI2012 (all events) 36 262200
BPI2012.W (completion events) 6 72413
BPI2012.W (all events) 19 170107
BPI2012.A 10 60849
BPI2012.O 7 31244

Table 2: Characteristics of datasets used in the experimental evaluation

problems. We note that there are 465 cases which reside at both open and closed datasets. For these
overlapping cases, since the record at the closed dataset encompasses the record at the open dataset, we
used the record at the closed dataset for the experimental evaluations. There are 1,841 cases in the combined
problem management process dataset. The number of activities and events per dataset is shown in Table 2.

Similar to (Evermann et al., 2016b), we evaluated the BPI 2012 dataset by the three subprocesses and as
combined datasets as well. For the events related to the W subprocess, events can be associated with three
different lifecycles: “Start”, “Schedule”, and “Complete”. The different lifecycles records the different stages
that each work item goes through, e.g., “Start” relates to the moment when the work item is obtained by a
resource. For the rest of the datasets, all events are only associated with the “Complete” lifecycle. As such,
we created two datasets for both the subprocess W dataset and the combined BPI 2012 dataset. In the first
version, only events associated with the “Complete” lifecycle, i.e., activity completion events, are included
and in the second version, events are identified by the concatenation of both the activity and lifecycle,
e.g., “Activity A+Start” This allows a more detailed description of the recorded events and provides more
information to the prediction model. The case information as observed in the datasets are converted to
input matrix to PMRec using the previously defined data representations.

6.2. Building input matrix

Table 4 shows the make-up of each input matrix variant. Each feature is composed of a set of possible
values, e.g., the CaseId feature is composed of all the case IDs in the event log. The number of possible
values per feature is shown in Table 3. In order to predict for unseen cases in the validation and test set,
the case IDs in both sets are included as possible values for the CaseId feature. We note that the case ID of
each case is only a unique identifier used to differentiate between different ongoing and historical cases. In
a real-life implementation, the CaseId feature can be periodically updated so that new columns are added
in anticipation of the caseIDs of future cases. As such, we emphasize that no case information from the
validation and test sets are included into the training of the prediction model. We order the possible values
of each feature in ascending order to maintain the same structure for the same feature across all variants
(string values are first converted into integer). The different column features are ordered as indicated in
Table 4. As such for the input matrix variant “Act” of dataset BPI2013.Incidents, the input matrix would
have 7554 + 13 + 169 + 5 = 7769 columns.

Each case is first converted into its step case representation. Consider the input matrix variant Step
and case σ6 = 〈a, e, g, i, c〉 in Figure 1. Its 2-process step representation would be step(σ6, S

(2)) =
{〈a, e〉, 〈e, g〉, 〈g, i〉, 〈i, c〉}. Next, it is incrementally added as feature vectors starting from the first step
with each increment being the next taken step. For example, at the first two steps, the taken steps is
N2
σ6

= {〈a, e〉, 〈e, g〉} and the next taken step is s = 〈g, i〉. A feature vector x with n = |CaseId∪Taken steps∪
Next step| components can then be built as follows:
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Dataset Number of possible values
CaseId Taken / Next act Taken / Next step∗ Impact

BPI2013.Incidents 7554 13 169 5
BPI2013.Problems 1841 7 49 5
BPI2012 (completion events) 13087 24 576 na
BPI2012 (all events) 13087 36 1296 na
BPI2012.W (completion events) 13087 6 36 na
BPI2012.W (all events) 13087 19 361 na
BPI2012.A 13087 10 100 na
BPI2012.O 13087 7 49 na

∗ Steps are of step size 2 and is comprised of only the activity attribute

Table 3: Number of possible values per feature

Input Matrix Features

Act CaseId, Taken acts., Next act.
Step CaseId, Taken steps, Next step
StepLc CaseId, Taken steps, Next step
StepImpact CaseId, Taken steps, Impact, Next step

Table 4: Features for different input matrix variants

xj :=


1, if j = 6 ∨ j = s

1/|N2
σ6
|, if j ∈ N2

σ6

0, otherwise.

In essence, values are assigned to components corresponding to the observed case information so that each
feature sums to 1. The target variable value is set as 1. One limitation of observed dataset is that only
positive information is provided; negative events are used to provide negative information for the training
of PMRec.

6.3. Adding negative steps

As recalled, by making an explicit completeness assumption, negative events can be induced from the
event log. Negative events serve as negative information on a particular event which cannot occur at a
particular position in an event sequence. For simplicity, we sample from the set of unobserved steps as
negative events for each partial case. Consider again case σ6 in Figure 1. As previously shown, at the
first two steps, the taken steps is N2

σ6
= {〈a, e〉, 〈e, g〉} and the next step is s = 〈g, i〉. By using the set of

possible steps following the last executed activity g, Sg = {〈g, ei〉 | ei ∈ A}, negative steps are taken from
Sg \ {〈g, i〉}.

For each negative step, we construct a separate feature vector, replacing the observed next step with the
negative step and assigning 0 to the target variable rather than 1. This means that if 3 negative steps are
sampled, 4 feature vectors would be constructed instead of 1.

Given an ongoing case, prediction is done by predicting all possible steps then returning the top ranked
result as the most probable next event.

6.4. Predicting next event

To predict the next event of an ongoing case, it is first converted into feature vectors with all possible
next steps. Consider again case σ6 in Figure 1. As before, we consider the first two steps of the case such
that taken steps is N2

σ6
= {〈a, e〉, 〈e, g〉}. Assuming that this is an ongoing case and that the actual next
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Parameter Value Note

Gradient learning
gradient descent als Gradient descent method to learn model parameters
init stdev 0.1 Sets the std. deviation for the initialization of the parameter
l2 reg 0 L2 penalty weight for all coefficients
l2 reg V 0.01 L2 penalty weight for linear coefficients
l2 reg w 0.5 L2 penalty weight for pairwise coefficients
min iter 2000 Minimum number of iterations for training
max iter 10000 Maximum number of iterations for training
random state 123 The seed of the pseudo random number generator that initializes the parameters
rank 20, 50, 100 The rank of the factorization used for the second order interactions
Input matrix
step size 2 see Definition 8
negative step 3 see Definition 11

Table 5: Configurations for learning parameters of PMRec.

step (〈g, i〉) is unknown, we construct |A| feature vectors where A is the set of activities for this process. For
each feature vector, we set the next step value as s ∈ Sg where Sg = {〈g, ei〉 | ei ∈ A} is the set of possible
next steps following the last executed activity g.

Predicting using PMRec would result in an output vector ŷ where each component ŷi corresponds to the
prediction for a particular possible next step. The ŷi with the highest value can be interpreted as the most
probable next step. Finally, we output the last activity of the top-ranked next step as the predicted next
event.

We note that for the datasets with all events, i.e., BPI2012 (all events) and BPI2012.W (all events), the
next predicted next event, e, can be identified by solely the activity or by the concatenation of the activity
and lifecycle. In the related work (Evermann et al., 2016b), the predicted next event is identified by the
concatenation of both the activity and lifecycle.

The performance of PMRec is evaluated using a validation approach.

6.5. Evaluation method

In a validation evaluation approach, a validation set is used to prevent the over-training of the prediction
model before performing evaluation using the test set. By convention, we use a 60/20/20 split on the cases
of each dataset where 60% of the cases are included into the training set and 20% are included into the
validation and test sets respectively.

Learning is monitored by the RMSE of the validation set and a maximum and minimum number of
iterations are defined to ensure termination of model training. The model configurations of PMRec is shown
in Table 5. To evaluate the results, precision is used to measure the proportion of top-ranked next step
predictions that correspond to the actual next step, i.e., the number of correct next step predictions divided
by the total number of next step predictions.

7. Experimental results

In our experiments we found that all datasets quickly converge close to the optimal precision and that
the use of the validation set significantly helps prevent the overfitting of PMRec. As shown in 4, RMSE
of the validation set converges to a low value very quickly and continues to decrease gradually with more
iterations after a spike at the early stage. The drop in the RMSE of the validation set at the early stage
coincides with the drop in RMSE of the train set.

We first show the effects that each of the proposed techniques has on the performance of PMRec.
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Figure 4: RMSE of train and validation set for dataset BPI2012.A using Step input matrix (can be viewed in black & white)

Figure 5: Precision comparison between input matrix variant “Act” and “Step” per dataset (can be viewed in black & white)

7.1. The effect of process steps

Representing cases with process steps gives significantly better performance than by simply taking into
account the previous events of an ongoing case. Figure 5 shows the highest obtained precision under the
input matrix variants, Act and Step, for each of the dataset. It is clear that the performance of PMRec
using the Step input matrix variant is significantly better than the performance using the Act input matrix
variant.

As shown in Figure 5, the performance of PMRec using the input matrix variant Step is better than
the performance using the Act input matrix variant across all datasets. Furthermore, for the datasets
which are more complex in terms of the underlying process, using the Step input matrix variant can give
significantly better performances. For example, for BPI2012.W (completion), precision yielded by using the
Step input matrix variant is 21.05% higher than when the Act input matrix variant is used. As recalled,
the subprocess W tracks the work items related to loan applications. These work items are executed by
resources (employees) and thus both the type and number of work items as well as the order in which they are
executed vary significantly per case. Conversely, the subprocess A tracks the status of loan applications and
therefore has less variability. This is reflected by the comparatively lesser performance differences between
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Figure 6: Effect of different rank values on precision per dataset (can be viewed in black & white)

the input matrix variant Act and Step for BPI2012.A.

7.2. The effect of rank

As previously mentioned, FM models all interactions between variables using factorized parameters.
The rank value at the model configuration determines the number of latent factors required to describe the
variable interactions. Intuitively, for input features vectors with complex and numerous interactions, higher
rank would yield better precision, but over certain threshold results usually converge, as shown in (Koren
et al., 2009; Larráın et al., 2015).

Figure 6 shows the effect of rank value on precision result per dataset. For smaller and more simple
datasets such as BPI2012.A, increasing the number of rank from 20 to 50 improves precision dramatically
but further increase in rank has little effect on precision. Conversely, for datasets that are larger and more
complex such as BPI2012.W (all events), precision continues to improve as rank increases. The convergence
of precision for the simpler datasets such as BPI2012.A is inline with the findings in the literature. However,
the lack of convergence for some of the datasets suggests that higher rank values could be configured.

7.3. The effect of step size

We also experimented with how varying step size can affect performance. In terms of computation,
increasing step size exponentially increases number of columns of the input matrix. Consider the dataset
BPI2012.O which has 8 unique event types. With step size of 2, there would be 82 possible steps and at
step size 3, there would be 83 possible steps. As such, due to computational requirement, step size 3 and
4 are only performed with selected datasets. As previously shown in Section 7.1, including control flow
information by using the process step representation with a step size of 2 increases precision as compared to
simply representing a case as a vector of occurred activities. One would expect to further improve precision
by increasing step size so that non-local dependencies between activities can be incorporated as well (van der
Aalst, 2010). As shown in Table 6, contrary to intuition, further increasing step size from 2 does not seem
to increase precision. One possible way for further testing whether non-local dependencies can be captured
by increasing step sizes could be through artificially adding non-local dependencies into real-life or synthetic
datasets.

7.4. The effect of negative steps

One main contribution is the adaptation of negative events to provide negative information at train-
ing. Our experiments show that this is crucial in yielding results that are comparable to state-of-the-art
approaches such as neural networks. Similar to increasing the step size, increasing the number of negative
steps can also significantly increase the size of the input matrix. Therefore, experiments that vary the num-
ber of negative steps are only conducted for selected datasets. As shown in Table 7, increasing number of
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Dataset Step size
2 3 4

BPI2013.Incidents 0.604 0.598 0.599
BPI2013.Problems 0.5 0.488 0.494
BPI2012.W (completion events) 0.780 0.780 0.779
BPI2012.A 0.800 0.800 0.800
BPI2012.O 0.795 0.804 0.791

Table 6: Effect of varying step size to performance using Step input matrix variant

Dataset Number of negative steps
0 3 5 All

BPI2013.Incidents 0.378 0.604 0.606 0.605
BPI2013.Problems 0.483 0.494 0.5 0.5
BPI2012.W (completion events) 0.634 0.780 0.779 0.779
BPI2012.A 0.297 0.800 0.800 0.780
BPI2012.O 0.740 0.802 0.804 0.803

Table 7: Effect of varying number of negative steps to performance

negative steps from 0 to 3 improves precision for all datasets. The column “All” refers to when all possible
steps that are not the actual next taken step are included as negative steps.

As presented in (Goedertier et al., 2009), the inclusion of negative events makes a completeness assump-
tion that the dataset contains all possible behavior of the underlying process. This can become problematic
since the dataset often does not include all possible behavior and therefore an assumed negative step from
the training set can actually be an observed step in the validation and test sets. This tradeoff can be seen
in Table 7 where the benefit of negative steps reduces and even reverses for 5 and “All” negative steps.

7.5. The effect of impact level

One key advantage of using the Factorization Machine model is that different features can be easily
incorporated into the prediction without significant modification to the model. We showcase this with the
experiments on the datasets BPI2013 using the input matrix variant StepImpact. As previously mentioned,
this dataset records the process of incident and problem management at Volvo IT Belgium. Each case refers
to the processing of a particular incident (BPI2013.Incidents) or problem (BPI2013.Problems). Impact
refers the criticality of an incident and is measured by the number of people or systems affected (Steeman,
2013a,b). Clearly, the impact of each case could potentially influence the unfolding of a case. The impact of
each case can be easily included into each feature vector such that the possible impact values (Major, High,
Medium, Low) are individual feature columns. Component corresponding to the impact of the case that the
feature vector is representing is assigned with the value 1 and 0 is assigned to the other components.

As shown in Table 8, the inclusion of the impact feature improved precision for BPI2013.Problems.
Precision improved 1.2% from 0.5 to 0.512. However, precision decreased 0.002% for BPI2013.Incidents.
This suggests that there are some influence from the impact classification of a case on how that case unfolds.
Overall, the results suggest that finding the appropriate additional feature that can significantly improve
prediction precision is challenging. There are many feature selection techniques in the literature that can
be applied for this task Tan et al. (2005). However, an exploration of the feature selection techniques to
improve prediction precision is outside the scope of this paper.

7.6. Comparison to state-of-the-art techniques

Table 8 presents an overview of the experimental results. From the list of precision results associated with
different rank values, we select the top precision result. With the exception of the datasets BPI2013.Incidents
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Dataset Precision
RegPFA LSTM LSTM (Act + lifecycle) Act Step StepLc StepLc (Act + lifecycle) StepImpact

BPI2013.Incidents 0.714 0.735 - 0.529 0.612 - - 0.610
BPI2013.Problems 0.690 0.628 - 0.465 0.5 - - 0.512
BPI2012 (completion events) - 0.788 - 0.597 0.746 - - -
BPI2012 (all events) - - 0.859 0.676 0.773 0.825 0.839 -
BPI2012.W (completion events) 0.719 0.658 - 0.570 0.780 - - -
BPI2012.W (all events) - - 0.832 0.680 0.859 0.874 0.873 -
BPI2012.A 0.801 0.832 - 0.798 0.800 - - -
BPI2012.O 0.811 0.836 - 0.775 0.804 - - -

Table 8: Experimental results compared to RegPFA (Breuker et al., 2016) and LSTM (Evermann et al., 2016b)

and BPI2013.Problems, it is clear that PMRec achieves performances that are comparable to the state-of-
the-art approaches. For the dataset BPI2012.W (completion events), PMRec achieves a precision of 78%
which is ∼6% higher than the next highest precision from RegPFA presented in (Breuker et al., 2016). For
BPI2012 (completion events), BPI2012.A, and BPI2012.O, precision results are all less than 5% from the
precision results achieved by the neural network predictive model presented in (Evermann et al., 2016b).

For the datasets BPI2012 (all events) and BPI2012.W (all events), the LSTM model was used to predict
both the corresponding activity and lifecycle of the next event. To compare with the corresponding results,
PMRec was also used to predict both the corresponding activity and lifecycle of the next event under the
StepLc configuration. For the dataset BPI2012.W (all events), PMRec achieves a precision of 87% which
is ∼4% higher than the precision from the LSTM model. For the dataset BPI2012 (all events), PMRec
achieves a precision of 84% which is 5% less than the precision of the LSTM model.

As mentioned, for the datasets BPI2013.Incidents and BPI2013.Problems, PMRec performs worse than
the state-of-the-art approaches. At worst, the precision achieved by PMRec is ∼10% worse than the precision
achieved by RegPFA and LSTM. One possible reason is the number of cases. While the BPI 2012 dataset
has 13,087 cases, BPI2013.Incidents has 7,554 cases and BPI2013.Problems has 1,841 cases. For the PMRec
approach, having less cases means that there are less rows in the input matrix; it is difficult to learn the
interactions between features from an input matrix with little rows. This showcases a limitation of PMRec
in requiring a sufficient amount of event data in order to achieve good precision. In contrast, the number of
cases have a much more minor impact on the performances of the state-of-the-art approaches.

Discussion. Compared to the neural network methods, the proposed PMRec model based on FM
has fewer parameters to configure and to learn during the training phase. The good performances of
PMRec therefore motivates the use of this comparatively simpler model. Moreover, the experimental results
suggest that the characteristics of the predictive task in a process context are favorable to PMRec. The
results suggest that good prediction precision can be achieved without modeling long term dependencies
and incorporating high-order interactions between features, i.e., high-level latent features that describe the
interactions between latent features. In fact, this is reported in the paper that presented the LSTM model
where there are little differences in the prediction precision between a model that is trained on the previous
20 events to predict a particular event as compared to a model that is trained on the previous 10 or 5 events
(Evermann et al., 2016b). However, further experiments need to be performed with more synthetic and
real-life datasets to provide an understanding on whether these observations can be generalized.

8. Conclusions and future work

This paper introduced the use of factorization model for process prediction. The presented approach uses
FM as the base predictive model and includes elements of an underlying process through process steps. The
approach does not rely on explicit process models but known features of the process model, e.g., relations
between activities, can be easily added to improve performance. This means that the model lies between
adopting an implicit process representation and an explicit process representation.

Moreover, the choice to investigate factorization machine as the predictive model is motivated by the
common challenge in having to handle data sparsity in the field of recommender systems and next event
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prediction in BPM. Other than the selection of factorization machines as a potentially good predictive model,
this paper presents PMRec, a framework that integrates factorization machines so that it is adapted for the
task of predicting the next activity of a running case in a process.

Although it might seem trivial, it is not a straightforward task to adapt the nomenclature and formalities
of BPM so that it can be used with factorization machines. We then introduced the formal definitions in
order to facilitate other researchers and practitioners in the BPM area to make use of the factorization
machine model. In addition, we have provided some sample code in a public repository in order to help
others to use our code in a similar event prediction task, https://github.com/wailamjonathanlee/pmrec.

In order to explicitly model the control flow information between activities, this paper proposed a process
step representation that represents a given case as a sequence of occurred activity k-tuples. Furthermore,
to tackle the lack of negative samples in the event data, artificial negative samples are added into the input
matrix. Experimental results have shown that precision results obtained using the presented approach are
comparable to and at times exceeding the state-of-the-art approaches. Moreover, the results showed that
including the control flow information by using the process step representation gives better prediction pre-
cision than the straightforward representation of a case as a vector of occurred activities. The experimental
results also showed the benefits of training the predictive model using negative samples. Overall, this pa-
per shows promising results of using recommender system techniques for predictive tasks in the domain of
business processes.

As future work, we look to perform more experiments on other synthetic and real-life datasets to provide
further understanding on the observations that we have gained in this paper. We also look to further
explore the use of different feature selection techniques to select appropriate features. Known features of
the underlying process model can be incorporated into PMRec, since FM allows including new features
effortlessly. As such, process models discovered using process discovery algorithms can be used to limit
the possible next step values given the last executed activity. Also, we look to modify PMRec for other
prediction tasks such as predicting the time until case completion. Furthermore, the real valued feature vector
representation of event data can be applied in other predictive models such as neural networks. Lastly, one
identified challenge in the use of neural network is the lack of training data. Negative information generated
using negative steps can not only increase the amount of training data but provide negative information
that can improve precision.
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