
A Multi-criteria Approach for Team
Recommendation

Michael Arias, Jorge Munoz-Gama, and Marcos Sepúlveda

Computer Science Department, School of Engineering
Pontificia Universidad Católica de Chile, Santiago, Chile

m.arias@uc.cl, {jmun,marcos}@ing.puc.cl

Abstract. Team recommendation is a key and little-explored aspect
within the area of business process management. The efficiency with
which the team is conformed may influence the success of the process
execution. The formation of work teams is often done manually, without
a comparative analysis based on multiple criteria between the individual
performance of the resources and their collective performance in different
teams. In this article, we present a multi-criteria framework to allocate
work teams dynamically. The framework considers four elements: (i) a
resource request characterization, (ii) historical information on the pro-
cess execution and expertise information, (iii) different metrics which
calculate the suitability of the work teams taking into account both in-
dividual performance as well as collective performance of the resources,
and (iv) a recommender system based on the Best Position Algorithm
(BPA2) to obtain a ranking for the recommended work teams. A software
development process was used to test the usefulness of our approach.

Keywords: team recommendation, resource allocation, process mining,
business processes, recommender systems, organizational perspective

1 Introduction

The task of allocating resources to activities within a business process is a key
aspect in the area of Business Process Management (BPM) [12, 13, 27]. The
efficiency with which this task is performed has a high relevance in terms of
resources productivity, quality, performance and cost of the process. The use of
information about the resources that take part of the process activities is rec-
ommended to improve the task of allocating resources, for example, to support
the discovery of patterns related to resource assignment [23]. In the context of
processes that require a collaborative environment among their activities, the
correct selection of work teams represents a challenge for those in charge, as
it requires the selection of those resources that working together provide the
best performance to execute the activities that conform a process. Despite its
relevance, the formation of work teams is often done manually, without a com-
parative analysis based on multiple criteria between the individual performance
of the resources and their collective performance in different teams. Seeking
for a resolution to the problem of resource allocation, different methods have

2 M. Arias, J. Munoz-Gama, and M. Sepúlveda

been proposed, including: association rules [13], decision trees [14], and Markov
models [12]. Despite this, there is a lack of approaches that bring adequate auto-
matic support to compose and allocate activities to work teams within the area
of BPM [8]. From the literature, it is possible to identify different criteria which
are used to evaluate resources in the context of work teams, such as: resource
availability [16], abilities required to perform a task [11, 24], task complexity [24],
effort estimation [19], and sociometric techniques [4]. In [24], a genetic algorithm
is proposed to solve the problem of team formation, including practical consid-
erations: precedence among tasks, role, and competence level of the resource.
In [5], an optimization-based approach to support staffing in a software project
is introduced, where information related to the activities, the available human
resources, and a set of restrictions established by the organization (e.g., sched-
ule deadline, project budget, maximum allocation) are considered. Kumar et
al. [15] present a model that measures compatibility among resources when as-
signing work items to collaborative groups. In [6], they focus on team formation
within the context of agile software development methodologies, specifying rules
to choose the best developers for a given project. Recently, in [17] a method to
improve resource allocation in workflow management systems by computing the
social relation among two resources was proposed. This approach only considers
the time perspective. Cabanillas et al. [8] present an approach to select teams
proposing a language named RAL-Team to describe the work teams, which is
extended to establish selection conditions verified at the time of determining the
resources that are assigned to the different activities of the business process.
This approach does not take into account the historical information about past
process executions, neither support the team composition at run-time. From the
literature revised, we detected some limitations. First, there is a lack of meth-
ods that support the formation of teams at run-time. Second, there is a lack of
mechanisms that support decision making through the recommendation of suit-
able teams, in which the historic performance of the resources, both individually
and collectively, is analyzed. Third, the resources are always allocated consider-
ing one allocation unit: the activity level. Fourth, there is a need to count with
multi-criteria approaches that are scalable and user-oriented, where the criteria
used to determine the most suitable allocation can be extended in a faster and
easier manner for the decision maker.

In this work, we extend the Framework for Recommending Resource Alloca-
tion based on Process Mining presented in [3]. We approach resource allocation
considering work team recommendation. A role is a group of resources that are
interchangeable in the sense that any member of the group can perform a given
set of activities. It is also called a resource class [10]. For simplicity, a usual
assumption is that each activity can be performed by only a single role. On the
other hand, a resource can have multiple roles, e.g., a software architect can also
be the project leader. Usually, in a given process, several roles can be identified.
A work team (hereinafter and indistinctly, a team) is a group of resources, each
playing a specific role, that together can perform a process instance. This work
presents a novel approach that recommends the most suitable teams to execute
a request defined at run-time. We consider sub-processes as the target alloca-

Team Resource Recommendation 3

tion unit; however, it can also be used to allocate resources at the activity level
or at the process level, as a whole. Inspired by workflow resource patters [22],
three allocation types are considered: capability-based allocation, history-based
allocation and role-based allocation. We proposed a multi-criteria approach in
which various metrics are evaluated to incorporate the evaluation of the individ-
ual performance of the resources and their group performance through different
criteria: fitting between resources capabilities and the expertise required to per-
form an activity, past performance (frequency, duration, quality and cost), and
the current workload of each resource. The metrics are combined to generate a
final recommendation ranking using BPA2 [2]. We can formulate the process of
generating the ranking as a problem of obtaining the k most relevant items in a
multi-dimensional dataset. To accomplish this goal, we propose the use of BPA2
to answering top-k queries using lists of data items sorted by their local scores.
Also, we report experimental obtained results.

As a running example we use a traditional software development process: the
Waterfall life cycle [21]. It consists of five phases run sequentially: (i) Require-
ments analysis (role: analyst), (ii) System design (role: designer), (iii) Implemen-
tation or coding (role: developer), (iv) Testing (role: tester), and (v) Operation
and maintenance (role: support agent). The Waterfall is used within the context
of software engineering [25] for systems development, where each phase is con-
ducted by a resource that performs a specific role. Periodically, companies that
develop software require the selection of resources to form the team that will
execute each phase, in order to generate a specific software solution.

This article is organized in the following manner: Section 2 gives the pre-
liminaries that are necessary for the rest of the article. Section 3 describes the
method used to evaluate and recommend work teams. Section 4 focuses on the
experiments performed and discusses the results obtained when validating the
proposed approach. Finally, Section 5 presents the conclusions and future work.

2 Preliminaries
In this section we present the elements that form part of the framework to per-
form the recommendation of the most suitable work teams.

Resource Request Characterization
As we established before, a team is a group of resources, each playing a spe-

cific role, that together can perform a process instance. To recommend resources
to form a team, we must first define the properties each member of the work
team must comply with to fulfil its role in a process instance.

Definition 1 (Resource Request Characterization). A resource request
characterization c = (f1, . . . , fn) is a multi-factor representation of the desired
request properties, where fi is an element of a finite set.

We used at least one of the factors to express the need for a specific role. The
two-factor characterization proposed is a factor-tuple c = (role, type), where role
defines the organizational role for which the resource is being requested, and type
is the typology of the process execution instance that requests the resource. For

4 M. Arias, J. Munoz-Gama, and M. Sepúlveda

example, in the Waterfall life cycle, a different role is required for each phase
(e.g., an analyst or a tester), and type corresponds to the project type for which
the resource is requested (e.g., create a website or a mobile app). To determine
the phases of the process that could require a different role, we can consider
the semantics of the process itself and then perform a decomposition manu-
ally. Alternatively, this decomposition could also be done through automated
approaches, such as Passages [1], o Single-Entry Single-Exit (SESE) [18].

For each resource request characterization c, we use resource allocation in-
formation that includes: historical information of previous process executions,
contextual information (e.g., expertise information available in corporate infor-
mation systems), and weights describing the importance of each of the allocation
metrics. Our framework returns a ranking of the most suitable resources to be
allocated to each request.

Resource Allocation Metrics
For our approach, we adopt the use of the six dimensions introduced in [3],

where historical and contextual information is combined to evaluate the resources
through different metrics in accordance with the specified criteria (dimensions).
The proposed dimensions are:

– Frequency: measures the rate of occurrence that a resource has completed
the requested characterization.

– Performance: measures the execution time that a resource has achieved
performing the requested characterization.

– Quality: measures the customer evaluation of the execution of the requested
characterization performed by a resource.

– Cost: measures the execution cost of the requested characterization per-
formed by a resource

– Workload: measures the actual idle level of a resource considering the char-
acterizations executed at the time

– Expertise: measures the ability level at which a resource is able to execute
a characterization

We introduce a resource process cube Q to manage the historical information,
and the expertise matrices Er and Ec representing the expertise information. By
means of the cube and the matrices, the required knowledge is generated, with
the purpose of determine the suitability of the resources that take part of the
recommended team. The cube Q is a semantic representation of the historical
information to be analyzed. Basic OLAP operations such as slice and dice [9],
allow the extraction of specific information for each request characterization.

Definition 2 (Resource Process Cube). Let r, c and d, be a resource, a
resource request characterization, and a dimension, respectively. A resource pro-
cess cube Q[r][c][d] represents all the historical information about the resource
r and the characterization c necessary to analyze the dimension d. Similarly,
for a given dimension d, Q[][c][d] represents the historical information about all
resources for the execution of the characterization c, and Q[r][][d] represents the
information for all the characterizations performed by the resource r.

Team Resource Recommendation 5

Due the nature of our approach, there is a separation between the conceptual
level and how data are stored, in fact, the data could be stored in different ways,
e.g., in a relational database, and then computing the metrics on demand, or by
first precomputing some intermediate data, and then computing the metrics.

To illustrate the definition of the metrics for each dimension, we use the
performance dimension. Let Q[r][c][p].avg be an operation that returns the av-
erage duration, considering only cases in which the resource r has taken part
in executing the characterization c. Let Q[][c][p].min and Q[][c][p].max be the
minimum and maximum duration for executing the characterization c by any
resource. The performance metric is defined as follows in (1):

Performance Metric(r, c) =
Q[][c][p].max−Q[r][c][p].avg

Q[][c][p].max−Q[][c][p].min
(1)

Following the software development process example, if we have a charac-
terization c1 = (Analyst, website) and a resource r2 = Bob, Q[r2][c1][p] allows
us to access information related to the performance dimension of resource r2
when executing the characterization c1. Q[r2][c1][p].min and Q[r2][c1][p].max
are the minimum and maximum time Bob needed to execute c1. Meanwhile,
Q[r2][c1][p].avg is the average time required by Bob to execute c1. In the same
way, Q[][c1][p].min and Q[][c1][p].max are the minimum and maximum time
required considering all resources. For example, be 54 and 120 the minimum and
maximum time needed to perform the characterization c1, and 59 the average
duration of Bob, the Performance Metric(r,c) = 0,92.

At the same time, the expertise matrices Er[r][e] and Ec[c][e] allow us to rep-
resent the expertise e of a resource r and the desired level of expertise required to
execute a characterization c, respectively. We represent the expertise information
considering the Human Resource Meta-Model (HRMM) [20], where the exper-
tise can be organized by competencies, skills, and knowledge. To evaluate how a
resource fits with the expertise required to perform a given characterization, we
compare the value of each level of expertise Er with the corresponding value in
Ec. This comparison allows determining how qualified a resource r is, according
to an under-qualification and an over-qualification metric. For example, given
the characterization c1 = (Analysis, website) the desired expertise to perform
this characterization is a mid-high level on problem solving, business analysis,
and communication skills, represented as [2, 2, 2], meanwhile, the resource r1
has a low level in the above aspects, represented as [0, 1, 0]. If the expertise of a
resource r1 entirely match with the required expertise, the value for both exper-
tise metrics will be 1. Similarly, we established metrics for the other dimensions.
For further detail about the definition of all the different metrics used, reader can
refer to the previous publication [3]. From now on, we will refer to the metrics
in a generic way as metricj(Q(L), r, c), being L the event log used to compute
the cube.

Best Position Algorithm Problem
The challenge of recommending a group of resources to each request can

be formulated as a problem of finding the best k resources in a group of or-

6 M. Arias, J. Munoz-Gama, and M. Sepúlveda

Log

REQUEST WEIGHTS

1

2

3

4

Fig. 1. General framework for Team Resource Recommendation

dered lists, where each list corresponds to one of the metrics considered. With
the intention of giving a recommendation ranking, we were inspired in the use
of portfolio-based algorithm selection [26] as a strategy to obtain the k most
relevant items in a given group of data (top-k technique) considering multiple
criteria. Akbarinia et al. [2] proposed two algorithms (BPA and BPA2) to pro-
cess the top-k queries starting from the ordered lists of data in accordance to
each criterion considered. BPA2 is a suitable algorithm to accomplish the goal
of obtaining the k most relevant items in a multi-dimensional dataset, because
it requires a reduced number of data accesses, a lower query response time and
execution costs, with respect to other top-k query processing algorithms, such
as BPA and the Threshold Algorithm (TA), due its threshold management and
early stop condition.

3 Team Recommendation

To develop a team recommendation, we consider the elements presented in Sec-
tion 2. Figure 1 shows the general framework proposed. This framework helps
to specify a request at run-time, as well as weights that describe the level of
importance of each criterion established by the user. The recommendation takes
account of contextual and historical information. The defined metrics enable the
team resources to be evaluated in accordance with the specified criteria. No-
tice that in real-life scenarios, the best resources, evaluated individually, are not
always those who compose the best teams collectively. This may occur in the
composition of teams in software development projects or consulting projects,
emergency medical teams, among others. Therefore, we created a new method
of evaluation to propose suitable work teams, considering both individual and
group behavior, which we will present in this section.

To obtain the recommendation, we evaluate each team based on their his-
tory, expertise, and availability, considering: a) the individual behavior of each
resource that forms the team, independent of the teams it had belong to, b) the
behavior of each resource when it has previously formed part of the team that
is being evaluated. Later, the BPA2 algorithm is used to recommend the most
suitable teams. In the following, we will explain how each step is performed.

Team Filtering: A team is a group of resources that together can perform a
process instance, each taking care of a specific resource request characterization

Team Resource Recommendation 7

(an organizational role for a specific type of process instance). To consider the
history of a particular team, we extract from the event log those equivalent
process instances that they have performed together in the past.

Definition 3 (Team Filtering). Let L, tc, tr, be an event log, a tuple of
resource request characterizations, and a tuple of resources, respectively. Team
Filtering is a function team filter(L, tc, tr) = Lteam that returns an event log
that contain all events of the log L that belong to those traces that contain only
the characterizations tc, and where each resource request characterization in tc
has been performed by the corresponding resource in tr.

We will refer to Q(L) as the resource process cube created based on the historical
information contained in an event log L. Moreover, Q(team filter(L, tc, tr))
symbolizes the resource process cube that represents the historical information
where the team tr has worked together performing different occurrences of the
resource request characterizations tc associated to the process registered in L.

Individual assessment: To determine the individual evaluation of a resource,
independent of the teams it belonged, we used the cube Q(L), which represents
all the historical information contained in L. Based on Q(L) and the expertise
matrices, the different metrics are calculated; notice that all metrics are nor-
malized between 0 and 1. For each metric, an ordered list which evaluates the
behavior of each resource of the team in that dimension is created. Each metric
is weighted by previously specified weights, e.g., more importance could be given
to the dimensions of frequency and quality, above expertise and cost. For exam-
ple, Bob, John, and Ana are software analyst. After performing the individual
assessment, their evaluations are Bob = 0.549, John = 0.525, and Ana = 0.514.

Group assessment: To determine the group evaluation of the resources that
belong to a determined team, we consider the same metrics that are used in the
individual evaluation, but restricting the information to those process instances
in which the same team participated previously. To that end, we use the resource
process cube Q(team filter(L, tc, tr)), which only contains information related
to process instances of similar characteristics in which the team worked together
in order to execute them. Similar to the individual case, a group of lists for each
metric is created, each list containing the value of each resource in the team,
and weighting each metric by previously specified weights. For example, in the
software development process, Bob(analyst), Teo(designer), Dave(developer),
and Alice(tester) are the best resources evaluated individually in each life cycle
phase, respectively. However, if we consider the collective performance when
the resources have worked together as a team in the past, the best evaluated
resources would be: John, Pete, Sean, and Sara.

Team Recommendation: We propose a recommender system that uses a
method based on BPA2 to find the most relevant k-items of a multi-dimensional
dataset, i.e., to obtain a ranking of the most suitable teams to be recommended.
BPA2 implicitly calculates the overall score for each data item, maintaining in
a temporal set the k-data items with the highest overall score. The algorithm
allows an iterative approach to access and evaluate the resources based on their

8 M. Arias, J. Munoz-Gama, and M. Sepúlveda

local score and their position in each list. If at the same point the temporal set
contains k-data items whose overall scores are higher than or equal to a generated
threshold, then there is no need to continue scanning the rest of the lists. With
BPA2, no position in a list is accessed by the algorithm more than once, which
prevents re-accessing data items considering sorted or random access. The output
of the algorithm is an ordered list, where the final score for each resource is stored.
The first value represents the tuple of resources with the highest overall score
and therefore the best recommendation. More details about BPA2 can be found
in [2].

Definition 4 (Team Resource Recommendation). Let tc be a tuple of n re-
source request characterizations that must be performed and the Cartesian prod-
uct TTR = R1×. . .×Rn be the set of all n-tuples of resources that can be allocated
to the requests in tc. A team resource recommendation will propose a top − k
set of tuples of resources TR′ ⊆ TTR, such that |TR′| = k and ∀tr′ ∈ TR′

and ∀tr′′ ∈ TTR \ TR′ score(tr′, tc) >= score(tr′′, tc). Each tuple tr ∈ TR′

represents the allocation of a resource tri ∈ tr to a characterization tci ∈ tc,
∀i = 1, . . . , n.
A method based on BPA2 is used to solve this problem. Here, the elements of
the lists are defined for each tuple tr ∈ TTR. The lists considered are:

– Lists that measure the individual behavior of the resources: IL1,1, . . . , IL1,m,
. . . , ILi,j , . . . , ILn,m, being i = 1, . . . , n the different resource characteristics
considered, and j = 1, . . . ,m the different metrics considered. ILi,j contains
|R1| · . . . · |Rn| pairs of the form (tr,metricj(Q(L), tri, tci) · wj · ind wj)
where tr ∈ TTR, and wj is the weight given to the metric j. ILi,j is sorted
in descending order. The value of the metrics are computed based on the
resource process cube Q(L).

– Lists that measure the behavior of the resources on a specific team: GL1,1,
. . . , GL1,m, . . . , GLi,j , . . . , GLn,m, being i = 1, . . . , n the different resource
characteristics considered, and j = 1, . . . ,m the different metrics considered.
GLi,j contains |R1| · . . . · |Rn| pairs of the form:
(tr,metricj(Q(team filter(L, tr, tc)), tri, tci)·wj ·grp wj), where tr ∈ TTR,
and wj is the weight given to the metric j. GLi,j is sorted in descending
order. The value of the metrics are computed based on the resource process
cubeQ(team filter(L, tr, tc)), i.e., the resource process cube that represents
the information about those cases where the team tr has worked together
performing the different occurrences of the resource request characterization
tc associated to the process registered in the event log L.

Notice that the length of all lists is |R1| · . . . · |Rn|. This is a requirement for
using BPA2. The specified weight for each metric wj is decomposed so that part
of the weight is related to the respective IL∗,j list and the other part is related
to the corresponding GL∗,j list, such that ind wj + grp wj = 100%. The overall
score score(tr, tc) is the weighted value of the different m-metrics obtained by
the n-resources tuple tr when assigned to the characterization tc (2):

score(tr, tc) =
∑n

i=1

∑m
j=1 metricj(Q(L), tri, tci) · wj · ind wj +∑n

i=1

∑m
j=1 metricj(Q(team filter(L, tc, tr)), tri, tci) · wj · grp wj

(2)

Team Resource Recommendation 9

4 Empirical Evaluation

We adapted our evaluation considering the Waterfall life cycle as a team al-
location scenario. Below, we present the dataset and the configuration of the
experiments, and the discussion of the obtained results.

Datasets and Experimental Setup: For our experiments, we considered a
synthetic event log with 1,000 cases. We also considered the following attributes
related to the software development process: Case ID, Role, Typology, Resource,
Overall quality, Incurred cost by phase, Phase creation date, Phase closing date.
We created the matrices that describe the expertise required to execute each
phase and the level of expertise of each resource, and an array that describes the
effective availability of each resource at the moment of making the recommenda-
tion. An extension to the OpenXES library is used to standardize and represent
the historical and contextual information 1. We used 20 resources, who perform
the role of analysts, designers, developers, and testers. We reproduced three dif-
ferent scenarios in which it was necessary to perform a team recommendation for
projects developed according to the Waterfall model. For the resource request
characterization, we considered as allocation unit the first four phases of the life
cycle. We focused on a single project typology: mobile application development.
Our evaluation involves the following experiments:

(a) Calculate the top-3 teams. Weights were specified so as to give more im-
portance to the individual behavior of the resources through the different
phases.

(b) We used a similar scenario to the one described in experiment (a), but giving
more importance to the group behavior of the resources when they work
together through the project phases.

(c) Personalized scenario were created, where weights were specified in accor-
dance to the project being developed.

Discussion: To perform the recommendation, we evaluate the resources based
on the defined metrics. We specified different weights wj in accordance to the
level of importance given to each metricj . The weight is decomposed, so that
a part of the weight is related to each individual assessment list IL∗,j and the
other part to each group assessment list GL∗,j . These weights are applied to the
metric score for each list of each metric. We used the BPA2 algorithm to find the
resource tuples that have the highest overall score. BPA2 produces an ordered
list, wherein the final score for each tuple of resources is stored. The top-k tuples
represent the most suitable teams to be recommended. For the three experiments,
we specified the following weights for the metrics: performance: 20 - quality: 50 -
cost: 20 - other dimensions: 10. Particularly, an individual weight ind wj of 90%
and a group weight grp wj of 10% were specified in the experiment (a); 10%
individual and 90% group weights for the experiment (b); and 80% individual
and 20% group weights for the experiment (c). When creating the event log, we
simulated the existence of one resource whose individual evaluation was better

1 https://svn.win.tue.nl/trac/prom/browser/Packages/ResourceRecommendation/
Trunk/src/org/processmining/resourcerecommendation/utils/resrecxes

10 M. Arias, J. Munoz-Gama, and M. Sepúlveda

when compared to the other resources that participated in the same phase, i.e.,
there is a resource that is individually better executing each one of the phases.
In a similar manner, the existence of teams that are better working together in
comparison to other teams was simulated.

Table 1. Experiments results

Exp. Recommended Team
Phase 1
Analysis

Phase 2
Design

Phase 3
Coding

Phase 4
Testing

Overall
score

Top-1:(R1,R5,R9,R12) 0.549 0.539 0.522 0.541 0.538
(a) Top-2:(R1,R4,R9,R12) 0.549 0.535 0.522 0.541 0.537

Top-3:(R1,R5,R9,R10) 0.549 0.539 0.522 0.536 0.536
Top-1:(R2,R4,R8,R12) 0.525 0.535 0.512 0.541 0.610

(b) Top-2:(R1,R4,R9,R10) 0.549 0.535 0.522 0.536 0.590
Top-3:(R1,R6,R7,R10) 0.549 0.509 0.511 0.536 0.573
Top-1:(R1,R4,R9,R10) 0.525 0.535 0.522 0.536 0.547

(c) Top-2:(R1,R5,R9,R12) 0.549 0.539 0.522 0.541 0.544
Top-3:(R1,R5,R8,R10) 0.549 0.539 0.512 0.536 0.538

(*) Phase scores correspond to the individual score of the resources allocated to each phase.

Table 1 shows the results obtained in the experiments. Experiment (a) shows
that the resources defined as the best individually are effectively the recom-
mended team (top-1) according to the ranking. In this particular case, the most
suitable resources are: the analyst R1, the designer R5, the developer R9, and
the tester R12. For experiment (b), we focused on forming the teams consid-
ering how well the resources had worked collectively in the past. The results
are the expected ones, according to the construction of the experiments. After
performing the experiment, the results recommended as the most suitable team
the resources: R2, R4, R8 and R12, which represents the group of resources with
the best performance working together in comparison to the rest of the teams.
In experiment (c) we adjusted the given weights in accordance to specific priori-
ties. The results obtained are different to those generated in experiment (a) and
(b), which proves that our approach produces the recommendation based on the
characterization of each request, generating diverse results that adapt to spe-
cific business contexts. R1, R4, R9 and R10 form the team that best adjusts to
the specified priorities. Note that in each experiment a ranking is recommended
with the resource tuples to be allocated in accordance to the top-k queries de-
fined. Thus, the person in charge of making the allocation has prioritized team
alternatives to allocate, with the possibility of including, if necessary, other sub-
jective criteria not considered as part of the framework. The applicability of our
approach can be supported through today corporate information systems (e.g.,
ERP SAP), which allow the storage and extraction of historical contextual infor-
mation as well. For usual scenarios where the overall process can be decomposed
into disjoint subsets (e.g., activities, sub-process, or phases) our approach is able
to generate a ranking of feasible work teams. For more adaptive and complicated
scenarios (e.g., agile software development), which might involve a overlapping,
incremental, or iterative phases, our framework needs to be adapted.

Team Resource Recommendation 11

5 Conclusions and Future Work

We extended our Framework for Recommending Resource Allocation based on
Process Mining. The main contributions of this work are as follows. First, we
extended our previous framework from recommending single resource rankings
to recommending teams that work better collaboratively. Second, our framework
is focused on improving decision making, helping the person in charge of form-
ing teams to optimize the use of available human resources. Third, we based the
team recommendation on the evaluation of multiple criteria that measure the
past behavior of the resources, their expertise and current workload. Moreover,
our strategy to evaluate teams combines the evaluation of the individual behav-
ior of the resources and their behavior when they collaborate working together
as a team. Fourth, due to the flexibility of this approach, the team recommenda-
tion can be executed considering any allocation unit, e.g., at the activity level,
at the sub-process level, or at the whole process level, allowing it to be adapted
and used in different abstraction levels. For usual team recommendation scenar-
ios, the proposed approach generates the recommendation of the most suitable
work teams based on the definition of a resource allocation request at run-time,
and the use of contextual and historical information. However, for more complex
scenarios, our framework needs to be adapted in order to allocate teams dynam-
ically. Future work consider the creation of heuristics that enable determining
faster those teams more likely to be recommended in accordance to the given
characterizations, in order to optimize the process for computing the results.
Also, we will examine other criteria to measure collaborative work which could
be considered as part of our approach, as well as integrate information about
the responsibility degree for each activity [7]. We have evaluated our approach
over a proof-of-concept implementation. We aim to evaluate the effectiveness
and efficiency of our technique through case studies using real-life event logs.

Acknowledgments. This project was partially funded by the Ph.D. Scholar-
ship Program of CONICYT Chile (Doctorado Nacional/2014-63140181), Uni-
versidad de Costa Rica and by Fondecyt (Chile) Project No.1150365.

References

1. van der Aalst, W.M.P., Verbeek, H.M.W.: Process discovery and conformance
checking using passages. Fundam. Inform. 131(1), 103–138 (2014)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for efficient top-k
query processing. Inf. Syst. 36(6), 973–989 (2011)

3. Arias, M., Rojas, E., Munoz-Gama, J., Sepúlveda, M.: A framework for recom-
mending resource allocation based on process mining. In: BPM Workshops (DeMi-
Mop). pp. 458–470 (2015)

4. Ballesteros-Pérez, P., González-Cruz, M.C., Fernández-Diego, M.: Human resource
allocation management in multiple projects using sociometric techniques. Intl.
Journal of Project Management 30(8), 901–913 (2012)

5. Barreto, A., de Oliveira Barros, M., Werner, C.M.L.: Staffing a software project: A
constraint satisfaction and optimization-based approach. Computers & OR 35(10),
3073–3089 (2008)

12 M. Arias, J. Munoz-Gama, and M. Sepúlveda

6. Britto, R., de Alcântara dos Santos Neto, P., Rabelo, R.A.L., Ayala, W., Soares,
T.: A hybrid approach to solve the agile team allocation problem. In: Proceedings
of the IEEE Congress on Evolutionary Computation, CEC. pp. 1–8 (2012)

7. Cabanillas, C., Resinas, M., Cortés, A.R.: Automated resource assignment in
BPMN models using RACI matrices. In: On the Move to Meaningful Internet
Systems: OTM, Confederated International Conferences. pp. 56–73 (2012)

8. Cabanillas, C., Resinas, M., Mendling, J., Cortés, A.R.: Automated team selection
and compliance checking in business processes. In: Proceedings of the 2015 Inter-
national Conference on Software and System Process, ICSSP. pp. 42–51 (2015)

9. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology.
ACM Sigmod record 26(1), 65–74 (1997)

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of business
process management. Springer (2013)

11. Gerogiannis, V.C., Rapti, E., Karageorgos, A., Fitsilis, P.: Human resource assess-
ment in software development projects using fuzzy linguistic 2-tuples. In: Artificial
Intelligence, Modelling and Simulation (AIMS). pp. 217–222. IEEE (2014)

12. Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. DKE 70(1), 127–145 (2011)

13. Huang, Z., Lu, X., Duan, H.: Mining association rules to support resource allocation
in business process management. Expert Syst. Appl. 38(8), 9483–9490 (2011)

14. Kim, A., Obregon, J., Jung, J.: Constructing decision trees from process logs for
performer recommendation. In: Business Process Management. pp. 224–236 (2013)

15. Kumar, A., Dijkman, R.M., Song, M.: Optimal resource assignment in workflows
for maximizing cooperation. In: Business Process Management. pp. 235–250 (2013)

16. Li, C., Van Den Akker, J., Brinkkemper, S., Diepen, G.: Integrated requirement
selection and scheduling for the release planning of a software product. In: Interna-
tional Working Conference on Requirements Engineering: Foundation for Software
Quality. pp. 93–108. Springer (2007)

17. Liu, X., Chen, J., Ji, Y., Yu, Y.: Q-learning algorithm for task allocation based on
social relation. In: Process-Aware Systems, pp. 49–58. Springer (2014)

18. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

19. Narendra, N.C., Ponnalagu, K., Zhou, N., Gifford, W.M.: Towards a formal model
for optimal task-site allocation and effort estimation in global software develop-
ment. In: 2012 Annual SRII Global Conference. pp. 470–477 (2012)

20. Oberweis, A., Schuster, T.: A meta-model based approach to the description of
resources and skills. In: AMCIS. p. 383 (2010)

21. Royce, W.W.: Managing the development of large software systems. In: proceedings
of IEEE WESCON. vol. 26, pp. 1–9 (1970)

22. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor, O.,
e Cunha, J.F. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer (2005)

23. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently
mining the organisational perspective of business processes. DSSs (2016)

24. e Silva, L., Costa, A.P.: Decision model for allocating human resources in informa-
tion system projects. Intl. Journal of Project Management 31(1), 100–108 (2013)

25. Sommerville, I.: Software Engineering. Pearson (2015)
26. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-

rithm selection for SAT. CoRR abs/1111.2249 (2011)
27. Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Foun-

dations of Intelligent Systems, pp. 701–708. Springer (2014)

