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Abstract. Process mining deals with the extraction of knowledge from
event logs. One important task within this research �eld is denoted as
conformance checking, which aims to diagnose deviations and discrepan-
cies between modeled behavior and real-life, observed behavior. Confor-
mance checking techniques still face some challenges, among which scala-
bility, timeliness and traceability issues. In this paper, we propose a novel
conformance analysis methodology to support the real-time monitoring
of event-based data streams, which is shown to be more e�cient than
related approaches and able to localize deviations in a more �ne-grained
manner. Our developed approach can be directly applied in business pro-
cess contexts where rapid reaction times are crucial; an exhaustive case
example is provided to evidence the validity of the approach.

Keywords: real-time monitoring, process decomposition, conformance
checking, conformance analysis, process mining, event logs

1 Introduction

The research �eld of process mining deals with the extraction of knowledge from
event logs, and has situated itself in the course of the past decade between the
areas of Business Process Management (BPM) and data mining. As more and
more process aware information systems are implemented, an increasing amount
of event-based data is being recorded, which can hence be analyzed by process
mining related techniques. An important task within process mining is called
conformance checking (or, more broadly: conformance analysis), which aims to
diagnose deviations and discrepancies between modeled behavior and real-life,
observed behavior.

Conformance checking techniques face some hard and complex challenges in
the context of today's organizations. First, the increasing amount of information



systems being implemented and applied to provide operational support, drive de-
cisions and assist managers have led to a barrage of data, which should be parsed
and analyzed in a manner which is both correct and scalable by conformance
checking techniques. Second, given the current turbulent economic environment,
stakeholders desire more than ever the timely delivery of reports and warnings,
so that conformance checking techniques should no longer be applied in a post-
hoc manner, after the actual occurrence of the activities being executed. Third,
such techniques should be able to quickly and correctly localize and pinpoint
deviating behavior and its root causes. As process models can become very com-
plex, one wishes to highlight misbehaving parts in a running model, together
with the ability to �zoom in and out� on these elements. Many conformance
checking techniques have mainly been aiming to derive a global quality �metric�,
denoting the global �tness or appropriateness of a process model, but without
any real attention being applied towards localizing the main points of failure in
an understandable manner.

In this paper, we propose a novel methodology to support real-time confor-
mance analysis of event-based data streams, which aims to provide an answer
to the challenges listed above. Our approach contributes to the current body of
work in the following ways. First, we apply state of the art process model decom-
position techniques [1] to split a large process model in a series of sub processes
in order to gain a signi�cant speed-up when verifying events. Second, by applying
decomposition techniques, localizing deviations and volatile parts of the process
models becomes more straightforward, allowing end-users to quickly gain an in-
sight in which parts of the current model are failing or being violated. Third,
by combining model decomposition techniques with a fast, event-granular replay
technique, we are able to perform the conformance analysis task in a real-time
manner, thus allowing for the monitoring of incoming events as they are being ex-
ecuted. This is a strong contribution compared to earlier approaches [2, 3, 4, 5, 6],
where conformance checking techniques assume that a full recorded event log is
available and where the actual analysis can be time-consuming.

The possible areas of application for our developed approach are manifold.
In light of recent �nancial crises, the importance of the ability to immediately
react to external shocks and unforeseen events has become more apparent than
ever. Real-time monitoring, fraud detection and governance, risk and compli-
ance (GRC) veri�cation, and trading system failure protection all provide suit-
able contexts to apply our proposed technique. We apply our technique on a
case example of a large bank transfer process to illustrate the validity of our
contribution.

The remainder of the paper is structured as follows, Section 2 provides an
overview of preliminary de�nitions and an overview of related work. Section 3
describes in detail our applied methodology, together with a technical descrip-
tion of the implemented artifact. Section 4 provides an empirical validation by
describing a relevant case example and compares our technique against relevant
approaches in this context. Section 5 concludes the paper and outlines opportu-
nities for future work.



2 Preliminaries

This section provides an overview of preliminary de�nitions and concepts, as
well as an overview of related work.

2.1 Related Work

Conformance checking techniques are devoted to quantify the quality of a pro-
cess model in describing an event log. In the seminal work [7], a ��tness� metric
is presented to describe the extent to which event traces can be associated with
valid execution paths in the process model, and an �appropriateness� metric is
proposed to asses whether the process model describes the observed behavior
accurately enough. The aforementioned approach replays the traces of the log
in the model to evaluate these metrics. One of the drawbacks of this approach
is that for undeterministic models, the heuristics used in the replay may lead to
overestimating the metrics, due to the arti�cial creation of super�uous tokens in
the model. Several solutions have been proposed to overcome this issue. Weidlich
et al. propose a system to check process model consistency based on �behavioral
pro�les� [8, 9]�which can be derived in a straightforward and e�cient manner
but with loss of some granularity regarding the exact traces which can be ac-
cepted by the model at hand. Adriansyah et al. propose an alternative approach
where the concept of �alignments� are introduced in order to match an event
trace with a path through the model as closely as possible [3, 5, 6].

Various decomposition approaches to improve process discovery and confor-
mance checking tasks have been proposed. In [10], the notion of passages is used
to decompose a process model and/or event log into smaller parts to speed-up
process discovery and conformance checking. This approach has been gener-
alized in [1] where it is shown that any event-granular process discovery and
conformance checking tasks can be decomposed as long as the di�erent pro-
cess fragments (i.e. the submodels) only share uniquely-labeled activities. We
apply this approach in this paper, but utilize a Re�ned Process Structure Tree
(RPST) based decomposition method as outlined in [11, 12], as the hierarchical
topological structure provided by this decomposition allows to enable additional
analytical tasks not considered before, such as zooming in and out on various
parts of the process model being monitored.

Our methodology also bears similarities with the �elds of Complex Event
Processing (CEP) [13, 14] and Business Activity Monitoring (BAM) [15, 16].
Although these methodologies also support the (near-)real-time monitoring of
events, our approach di�erentiates itself in two ways. First, our approach stays
in the general realm of process mining by starting from a process model and
comparing this against a stream of incoming events which can be related to
several running process instances. Second, as we apply a decomposition strategy
over the given process model, this allows to immediately relate violations or
discrepancies to speci�c areas within this model, thus improving the localization
of the root-causes behind such deviations.



Our conformance analysis methodology is applicable on all process models on
which event-granular semantics can be de�ned and which can be meaningfully
decomposed into a series of submodels. We apply Petri nets throughout this
paper as the representational language for prescriptive process models.

2.2 De�nitions

De�nition 1. (Petri net, Work�ow net.) A Petri net [17] is a triplet PN =
(P, T, F ) with P a �nite set of places and T a �nite set of transitions with
P ∩ T = ∅. F is the set of �ows F ⊆ (P × T ) ∪ (T × P ). A place p is an
input place of a transition t i� (p, t) ∈ F ; similarly, p is an output place of t i�
(t, p) ∈ F . The state of a Petri net is de�ned by its marking M : P → N0. A
transition is �enabled� in a given marking whenever all of its input places contain
at least one token. Firing a transition then consumes a token from each input
place and produces a token in each output place.

We also de�ne the concepts of work�ow graphs, system nets and full �ring se-
quences.

De�nition 2. (Work�ow graph, System net, Full �ring sequence.) Given
a Petri net PN = (P, T, F ) , the work�ow graph is de�ned as the structural di-
rected graph G = (V,E) with V = P ∪ T and E = F . A system net is a triplet
de�ned over a given Petri net SN = (PN,mi,mo) where mi and mo de�ne the
initial and �nal markings of the Petri net, respectively. (PN,m1)[σ〉(PN,m2)
denotes that a sequence of transitions σ ∈ T is enabled and can be �red starting
from marking m1, resulting in marking m2.

Next, we provide the de�nition of an event log together with an event stream.

De�nition 3. (Event log, Event stream.) Let event log L be de�ned as a
multiset of traces (process instances) with the cardinality (or size) |L| denoting
the total number of traces in the log, including duplicates. A trace σL ∈ L is a
�nite sequence of activity labels with length |σL| and with σLi the activity at posi-

tion i in trace σL. The set of activities occurring in the event log is then denoted
as A = {σLi |σ

L ∈ L, i = 1 . . . |σL|}. For the purpose of our real-time confor-
mance analysis methodology, we de�ne an event stream ES = 〈e1, e2, . . . 〉 as a
sequence (�nite or in�nite) of arriving events with an event e ∈ ES expressed
as a tuple (id, act, time), act : ES → A a function denoting the corresponding
activity label for an event and function id : ES → N denoting the case identi�er.
It is trivial to convert an event log L to an event stream ES if a global order
relation can be established over the recorded activities in the event log.

To establish whether a given Petri net is able to correctly parse a given activity
trace, a mapping between the transitions T in the Petri net and the activity
alphabet A of the event log has to be established.

De�nition 4. (Mapping, Fitting trace) Given a Petri net PN = (P, T, F )
and an event log L with activity alphabet A, let µ : T 7→ A∪ (s, b) be de�ned as a



mapping between the transitions in the Petri net and activities in the event log,
denoting the relation between a �red transition and the recorded label in the event
log. Multiple transitions mapped to the same activity are denoted as duplicate
transitions. Transitions can be mapped to a silent activity s (not observed in

event log) and hence executed at-will whenever they are enabled. A trace σL ��ts�
a system SN = (PN,mi,mo) when a full �ring sequence (PN,mi)[σ〉(PN,mo)

can be found such that 〈µ(σi)|µ(σi) 6= s, i = 1 . . . |σ|〉 = σL. Transitions can also
be mapped to a non-silent, blocking activity b (also not observed in the event log),
which can hence never be executed during �tting replay of an event log trace.

3 Methodology

This section presents the developed real-time decomposed conformance analysis
approach. Fig. 1 provides a schematic overview of the approach, which can be
split up in four phases, explained in the next subsections. The implemented
prototype has been implemented as a collection of ProM plugins1.

3.1 Phase 1: Decomposition

The �rst phase of the proposed methodology entails decomposition. Formally,
the overall system net SN = (PN,mi,mo) is broken down into a collection of
subnets {SN1, SN2, . . . SNn} such that the union of these subnets yields the

original system net SN =
⋃
1≤i≤n SN

i. By means of decomposing the orig-
inal model into a set of subnets we aim to achieve the following goals. First,
fragment the conformance problems into a set of more comprehensive semantic
elements aiding on the diagnosis. Second, restrict the possible pernicious e�ects
of the heuristics decisions taken during the conformance analysis (see Phase 3 be-
low). Third, speed-up the analysis compared with non-decomposed conformance
checking techniques.

Due to the �nal goal of analyzing conformance, not all possible decomposition
approaches are appropriate for this task. Only those valid decompositions that
preserve the conformance integrity should be considered [1]. That is, given the
original net and the decomposed version, the original net perfectly conforms i�
all the subnets in the decomposed setting perfectly conforms. In other words,
no conformance anomalies should be lost or introduced in the transition from
the overall model to the decomposed one. In [1], the authors de�ne a valid
decomposition�applicable on Petri nets�as the decomposition that satis�es
the following conditions:

1. Each arc of the overall net belongs to exactly one of the submodels, i.e.,F =⋃
1≤i≤n F

iwhere F i ∩ F j = ∅ for 1 ≤ i < j ≤ n;
2. Each place of the overall net belongs to exactly one of the submodels, i.e.,P =⋃

1≤i≤n P
iwhere P i ∩ P j = ∅ for 1 ≤ i < j ≤ n;

1 ProM is an academic process mining framework to allow for rapid prototyping and
plugin development. See: http://www.processmining.org/prom/start
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Fig. 1. Architectural overview of the developed real-time decomposed conformance
analysis technique.



3. Silent transitions appears in precisely one of the subnets, i.e., ∀t ∈ T \
Tv(SN): |{1 ≤ i ≤ n | t ∈ T i}| = 1, where Tv(SN) stands for the set of
visible transitions (i.e., non-silent) of SN , i.e. Tv(SN) = {t ∈ T |µ(t) 6= s};

4. Non-silent, duplicate transitions appear in precisely one of the subnets, i.e.,
∀t ∈ Tv(SN) \ Tuv (SN): |{1 ≤ i ≤ n | t ∈ T i}| = 1, where Tuv (SN)
stands for the set of non-silent and non-duplicate transitions of SN , i.e.
Tuv (SN) = {t ∈ T |µ(t) 6= s ∧ @x ∈ T : x 6= t ∧ µ(x) = µ(t)};

5. Non-silent, non-duplicate transitions may appear in multiple subnets, i.e.,
∀t ∈ Tuv (SN): |{1 ≤ i ≤ n | t ∈ T i}| ≥ 1.

In other words, all elements in the original Petri net model must belong to a
submodel, but only non-silent, non-duplicate transitions can be shared among
several submodels. In [1], the authors prove that any valid decomposition satisfy-
ing these conditions captures all the conformance problems of the overall model,
and not more, i.e., it preserves the conformance integrity.

In [11], an approach based on SESE-components (Single-Entry Single-Exit) is
presented, i.e. subgraphs in the work�ow graph de�ned over a system net having
single entry and exit boundary nodes [18]. The decomposition of the work�ow
graph of a Petri net into SESE-components is well-studied and provides a valid
means to perform process model decomposition. In addition, SESE-components
represent a well-de�ned and understandable part of the process model, with
the added bene�t that it is possible to de�ne a hierarchical structure among the
model fragments which allows to navigate through the di�erent levels of granular-
ity, so that a SESE-component perfectly re�ects the idea of subprocesses within
the main process. Fig. 2 depicts an example SESE-component for the illustrative
case shown in Fig. 4, obtained using the technique proposed in [11]. Note that
this techniques can be combined with a user-supervised post-processing step in
order to obtain components that better ful�ll the domain-aware monitoring.

STRR

RRS

RRR

RRD

FTRR... ...

Fig. 2. �Open and register transaction� SESE-component from the case example in
Fig. 5. STRR and FTRR are the entry and exit boundary nodes of the SESE-
component, respectively. The rest of places and transitions are interior nodes of the
SESE-component.

3.2 Phase 2: Event Dispatching

Once a system net has been decomposed into a set of submodels, this collection
of models is passed to a central event dispatcher, which also serves to listen
for incoming events. For each submodels, it is examined whether it contains a



transition t which maps to the incoming event e, i.e. ∃t ∈ T : µ(t) = act(e).
If it does, this indicates that the event at hand should be replayed on this
particular submodel (multiple such submodels can be found), and the event is
passed forward to this model fragment.

It is possible to decouple the �worker�-instances for each model fragment in a
distributed fashion, with each model fragment running on separate machines. For
the purpose of our prototype, we have implemented a multi-threaded architecture
where a number of worker threads smaller than or equal to the number of process
fragments is spawned, with each worker thread overseeing the handling of one
or more process fragments. This approach allows for the concurrent handling of
event checking over the di�erent model fragments.

3.3 Phase 3: Replay

Once it is determined which process model fragment(s) should parse the incom-
ing event, the actual replay of this event on each such fragment is performed.
For each process model fragment, a state list is maintained denoting the current
marking reached by the currently-running process instances. When an event e
is queued for replay by a process fragment, the state linked to process instance
id(e) is progressed by investigating whether there exists an enabled transition
∃t ∈ T : µ(t) = act(e) ∧ enabled(t). The outcome of this evaluation determines
if the process model is showing discrepancies or not.

Some additional remarks should be provided at this point. First of all, we
note that we apply a heuristic, event-granular replayer similar to the one ap-
plied in [19]. The reasoning behind the choice to opt for a replayer playing the
token game instead of an alternative approach such as alignment or behavioral
pro�le based techniques [3, 9, 8] are twofold. First, alignment and behavioral
pro�le based replayers perform their analysis on a trace, rather than event level,
meaning that a complete process instance needs to �nalize in order to align the
log trace with a process model transition sequence As we are dealing with event
streams which need to be analyzed in a real-time manner, an event-granular re-
play strategy is required. Additionally, the behavioral pro�le approach does not
specify how duplicate tasks can be dealt with. Second, alternative approaches
su�er from scalability issues which make them unsuitable in a real-time context.
Subsequently, the replay procedure applied here is formalized in Algorithm 1.

A second remark entails the way decision points are resolved by the replayer.
Put brie�y, whenever multiple (enabled) transitions are mapped to the same
event log activity within a process model and/or whenever multiple invisible
activities are enabled, the replayer needs to determine which transition to execute
to handle the activity at hand. Note that�in extreme edge cases�it is possible
that the forced �ring of a non-enabled transition should be preferred if this avoids
several other violations later in the event trace [20]. In Algorithm 1, a replay
strategy is put forward which prefers the �ring of enabled transition mapped to
the activity at hand �rst, followed by the set of silent transitions, followed by
the set of non-enabled transition mapped to the activity at hand. If the chosen
set contains multiple transition candidates, a one-step look-ahead procedure is



executed to determine which candidate enables the execution of the following
activity (if no such candidate can be found, a random one is chosen). For the
multitude of process models, this look-ahead su�ces to resolve any ambiguities.
However, since we are dealing with streaming event data in this context, we
possess no knowledge about events which will arrive in the future, preventing
the execution of the look-ahead procedure. We propose and have implemented
three methods to deal with this issue. First, disabling the look-ahead altogether
and assuming that the model is deterministic enough to handle incoming events
without taking the context into account (n = 0 in Algorithm 1). Second (another
extreme), restarting the replay of the full trace each time an event is added, thus

allowing the replayer to revise earlier decisions (n = |σL| in Algorithm 1). Note
however that the replayer is con�gured such that no new violations may be
introduced related to historical activities (¬conforms(e) ∨ ¬r). In practice, this
means that the replayer can revise the state chain by modifying the execution
of silent transitions, selecting alternative albeit also enabled transition mapped
to a particular activity for activities which were parsed correctly, or selecting
alternative disabled transition, although only for activities which were not parsed
correctly (provided by function conforms in Algorithm 1). The third method
combines these two extremes by considering a part of the executed transition
sequence as �frozen�, only allowing revisions for the last n steps.

As a third remark, recall that it was mentioned in Subsection 2.1 that one
of the drawbacks of �token game�-based replayers entails the possible creation of
super�uous tokens, enabling subsequently for too much behavior. However, as
was mentioned in the description of Phase 1, we note that the decomposition of a
process model restricts the possible pernicious e�ects of the heuristics decisions
taken during the conformance analysis, as each model is now limited to dealing
with a smaller subset of behavior. In addition, as super�uous tokens are created
following the forced �ring of violating activities, the process instance or model
fragment at hand is likely to be immediately indicated as �dubious� at this
point, lowering the trustfulness of following events within this instance of model
fragment, independent of the replay strategy being applied. In addition, recall
that we are applying a hierarchical decomposition strategy, so that it is possible
to perform the actual replay at a lower-granularity level than the visualization
and reporting.

3.4 Phase 4: Reporting and Visualization

The �nal phase consists of reporting and visualization. Remark that, naturally,
these actions can be performed while the actual conformance analysis is running.
In general, two ways of result follow-up are supported by our architecture. The
�rst one consists of the logging of various statistics by the running worker threads
and replayers, which is polled regularly by decoupled components (e.g. a real-
time dashboard or perhaps logged to a persistent data store). The second manner
by which results can be interpreted consists of the de�nitions of various triggers
which are to be �red once certain criteria are met, such as a model fragment
overshooting a certain error rate threshold, for instance, of a high-risk activity or



Algorithm 1 Real-time event replay algorithm.
Input: PN = (P, T, F ), SN = (PN,mi,mo) % Given Petri net and System net
Input: e = (id, act, time) % Arriving event to be replayed (checked)

Input: σL % Trace of log activities having occurred so far for instance id(e)
Input: σ % Trace of model transitions being executed so far for instance id(e)
Input: m % Current marking of the model for instance id(e)

Input: conforms : σL → {True,False} % Function denoting conf. outcome of previous event
Input: enabled : (T ×M) → {True,False} % Function denoting if a transition is enabled under a

given marking (M is set of all possible markings)
Input: nextmarking : (T ×M)→M % Function returning the marking after (force) �ring a given

transition in a given marking
Input: random : (T ′ ⊆ T ) → T % Function returning random transition from a given set of

transitions
Input: µ : T → A ∪ (s, b) % Mapping function between model and log
Input: n := 0 % Number of steps to revise in historic trace (default: 0, i.e. none)
Input: r := False % Denoting whether the event being replayed is a revised historic event
Input: enext := ∅ % Next incoming event (optional; used when revising earlier decisions)
Output: Executed transition treplayed

1: function ReplayEvent(SN , e, enext, σ
L, σ, m, n, r)

2: % Handle revision of historic decision:
3: if ¬r ∧ n > 0 then

4: Remove last n items from σ and revert marking m to earlier state
5: for i ∈ 〈(n− 1), . . . , 0〉 do ReplayEvent(SN , σL|σL|−i, σ

L
|σL|−i+1

, σL, σ, m, n, True)

6: end if

7: % Set up transition candidate collections:
8: ECm := {t ∈ T |enabled(t,m) ∧ µ(t) = act(e)}
9: ECa := {t ∈ T |enabled(t,m)}
10: ECmf := {t ∈ ECm|∃t′ ∈ T : enabled(t′,nextmarking(t,m)) ∧ µ(t′) = act(enext)}
11: ECaf := {t ∈ ECa|∃t′ ∈ T : enabled(t′,nextmarking(t,m)) ∧ µ(t′) = act(enext)}
12: If := {t ∈ T |enabled(t,m) ∧ µ(t) = s∧

∃t′ ∈ T : enabled(t′,nextmarking(t,m)) ∧ µ(t′) = act(e)}
13: treplayed := ∅ % Transition chosen to be �red
14: % Determine transition to �re:
15: if |ECm| > 0 then % Transition is enabled
16: if |ECmf | > 0 then treplayed := random(ECmf )

17: else treplayed := random(ECm)
18: else if |If | > 0 then % Fire single invisible transition �rst
19: i′ := random(If )
20: Update σ := 〈σ, i′〉
21: Update m := nextmarking(i′,m)
22: C := {t ∈ T |enabled(t,m) ∧ µ(t) = act(e)}
23: treplayed := random(C)
24: else if |EC| > 0 ∧ (¬conforms(e) ∨ ¬r) then % Force �re
25: if |ECf | > 0 then treplayed := random(ECf )
26: else treplayed := random(EC)
27: else

28: % No single transition is mapped to this event's activity, skip �ring
29: end if

30: Update σ := 〈σ, treplayed〉
31: if ¬r then Update σL := 〈σL, e〉
32: Update m := nextmarking(treplayed,m)
33: return treplayed
34: end function

35: function ReplayTrace(SN , τ)
36: % Function added for completeness, not used in real-time setting
37: m := mi
38: σL := 〈〉
39: σ := 〈〉
40: for i ∈ 1..|τ | do ReplayEventSN , τi, τi+1, σ

L, σ, m, 0, False
41: return σ
42: end function



model fragment being violated. The actions which can be undertaken as a result
are self-explanatory, e.g. sending warnings, or halting running process instances
or even the complete system.

3.5 Implementation

Fig. 3 depicts a screen capture of our developed proof-of-concept implementation
is shown. In the prototype, events are streamed over a network in real-time
using a separate program (shown as the top left window in Fig. 3), which are
received by the conformance analyzer and veri�ed against the decomposed model
fragments. The top panel displays a global overview of the model being checked
against, with violating parts highlighted. Since the analysis is performed on
the basis of the decomposed model fragments, it is more straightforward to
pinpoint errors to a localized area within the global view than when using the
full model as-is to perform conformance analysis. The lower left panels depict
error monitors per submodel, showing the error rate for each model fragment over
time. The panel on the right shows general statistics and program information.
Note that this real-time approach allows to immediately react once a certain
(user-con�gurable) criteria are triggered, such as model fragments (or speci�c
activities) reaching a certain failure threshold., and shows the error rate for each
model fragment together with a global overview for the complete process model.

4 Case Example

In this section we propose the study of a realistic process case example in order
to illustrate the approach presented in this paper and its bene�ts. Model and
logs�original and decomposed�of this case example, together with the rest of
the benchmarks used in this experimental section, are publicly available2.

4.1 Description

The modeled process describes a realistic transaction process within a banking
context. The process contains all sort of monetary checks, authority noti�ca-
tions, and logging mechanisms responding to the new degree of responsibility
and accountability that current economic environments demand. The process is
structured as follows (Fig. 4 shows a high-level overview of the complete pro-
cess): it is initiated when a new transaction is requested, opening a new instance
in the system and registering all the components involved. The second step is to
run a check on the person (or entity) origin of the monetary transaction. Then,
the actual payment is processed di�erently, depending of the payment modal-
ity chosen by the sender (cash, cheque3 and payment). Later, the receiver is
checked and the money is transferred. Finally, the process ends registering the
information, notifying it to the required actors and authorities, and emitting the
corresponding receipt.

2 doi:10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c
3 The British term is used to avoid ambiguity with the verb �to check�.



Fig. 3. Screen capture of the developed real-time event conformance analysis prototype.
A global overview of the model being checked against, error rates per submodel, and
general statistics are reported. Our real-time approach allows to immediately react
once a certain (user-con�gurable) criteria are triggered, such as model fragments (or
speci�c activities) reaching a certain failure threshold.
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Fig. 4. High level overview of the running example process, structured in subprocesses.

The process has been modeled in terms of a Petri net. The decomposition
techniques based on SESE-components (see Section 3) is used to decompose
the overall model into suprocesses. In particular, a valid decomposition where
components have size at most 60 is derived. Finally, the decomposition is post-
processed by merging some of the SESE-components in order to reach the �nal
decomposition shown in Fig. 5 (which depicts the full process): eight of the
proposed subnets correspond with the eight subprocesses identi�ed in Fig. 4
(represented within gray rectangles), and the ninth subnet contains all the trivial
connections between suprocesses (represented outside the rectangles).

4.2 Experimental Scenario Evaluation

To illustrate the bene�ts of the technique, we present two possible scenarios
within the case example process.

Scenario 1: Serial Number Check The modeled process de�nes that, when-
ever a client executes the payment in cash, the serial numbers must be checked
(see Fig. 4). The banking regulation states that serial numbers must be com-
pared with an external database governed by a recognized international author-
ity (�Check Authority Serial Numbers CASN�). In addition, the bank of the case
example decided to incorporate two complementary checks to its policy: an in-
ternal bank check (�Check Bank Serial Numbers CBSN�), and a check among
the databases of the bank consortium this bank belongs to (�Check Inter-Bank
Serial Numbers CIBSN�). At a given point, due to technical reasons (e.g., peak
hour network congestion, malfunction of the software, deliberated blocking at-
tack, etc.), the external check CASN is not longer performed, contradicting the
modeled process, i.e., all the running instances of the process involving cash pay-
ment can proceed without the required check. Using the proposed approach, this
situation is detected immediately, identifying the anomalous subprocess (process
cash payment), focusing the conformance analysis on it, and eventually taking
the necessary countermeasures. The consequences of detecting such cases only
in forensic analysis performed months after the incident are severe and di�cult
to recover from. The situation is depicted in Fig. 6.
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Fig. 5. Running example: �nal valid SESE-decomposition.
The substructures are named according to Fig. 4.
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Fig. 6. In the �rst scenario, the Check Authority Serial Number (CASN ) activity is
skipped for some process instances, causing the CPC activity to fail, due to a missing
input token which was expected to be present and placed there by the execution of
CASN. The �gure depicts the error localized in the a�ected model fragment; the graph
depicts the cumulative and running amount of violations detected within this fragment.

Scenario 2: Receiver Preliminary Pro�ling During the check receiver
stage, the model establishes two steps to be performed sequentially: �rst, a pre-
liminary pro�ling analysis (�Start Receiver Pre Pro�ling SRPP�) is executed
over the receiver in order to evaluate and establish its potential risk (�Evaluate
Pre Pro�ling EPP�). Only then, a complete background check is performed over
the receiver, where this check can either be more casual (�Start Low Risk Re-
ceiver Processing SLRRP �) or thoroughly (�Start High Risk Receiver Processing
SHRRP�) depending on the potential risk detected on the preliminary pro�ling.
However, the presence of an inexperienced bank employee, malevolence, or sim-
ply a bad implemented bank evaluation protocol, could result in evaluating the
receiver with an un�nished preliminary pro�le check. The situation is depicted
in Fig. 7.

4.3 Experimental Comparison

To benchmark the performance of our developed real-time conformance analysis
technique against related approaches, a �tting event log was generated (based on
the model depicted in Fig. 5) containing ten thousand process instances (678864
events). A non-conforming (�noisy�) variant of this event log was produced by
inducing noise (inserting, deleting, and swapping of events) so that 10% of the
included events are erroneous.
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Fig. 7. In the second scenario, the preliminary pro�le check for receivers is skipped
(SRPP to FRPP), causing either the REPP or EPP activities to fail. The �gure depicts
the error localized in the a�ected model fragment; the graph depicts the cumulative
and running amount of violations detected within this fragment.

We compare our proposed technique against the alignment based replay tech-
nique by Adriansyah et al. [3] as well our original implementation of the token-
game based heuristic replayer [19]. Both the non-decomposed and decomposed
variants of these techniques were included, applying hereto the methodology as
described in [12].

Fig. 8 depicts the performance results of the experiment, showing the amount
of time taken (x-axis) to check the conformance of the included event logs (the y-
axis represents the cumulative ratio of event checks performed). As can be seen,
our proposed real-time conformance analysis technique performs competitively
with respect to related techniques. During the experimental run, a maximum
throughput rate (number of events checked per second) was reached at 35000
with the experiment running on a single consumer laptop with three worker
threads. Some additional remarks should be provided however when interpret-
ing Fig. 8. First, note that our proposed technique performs similarly as the
heuristic decomposed replay technique, but note that our techniques executes a
conformance check on an event-granular basis and thus can be applied in a real-
time monitoring setting, whereas the other techniques do so on a trace-granular
level (i.e. a complete trace should be provided to perform the replay procedure).
However, the event log is of su�cient size so that a step-wise e�ect is not ap-
parent in Fig. 8. Second, the replay procedure of the existing techniques was
modi�ed such that each trace is checked independently of the log context, mean-
ing that no distinct trace grouping is performed over the log and each trace is
checked as if it were belonging to an event log containing only this trace, so as to
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Fig. 8. Comparison of replay performance for the included techniques in the experi-
mental setup, showing the time taken per technique to replay the given event log.

better assess the performance of these techniques in a real-time scenario (where
the complete trace and log are unknown as events are arriving), rather than a
post-hoc scenario where the complete event log is provided as-is. Note that�for
the alignment based technique�this causes the non-decomposed version to per-
form better than the decomposed one. This is a perhaps unexpected result, but
is caused by the fact that the alignment based techniques are geared towards
checking�and as such expect�event logs as a whole. We thus emphasize the
fact that these techniques have�currently�not been optimized to be applied in
a real-time scenario (with an event stream being checked instead of an historical
log).

5 Conclusions and Future Work

In this paper, we have presented a novel business process conformance analysis
technique which is able to support real-time monitoring of event-based data
streams. Our approach o�ers a number of novel contributions, most notably a
speed-up compared to related techniques, the ability to localize discrepancies and
allowing real-time monitoring and thus rapid response times in mission-critical
or high-risk environments, which is a signi�cant bene�t compared to existing
conformance checking techniques which mainly work in an o�ine manner.

Future lines of research include: streamlining visualization and reporting ca-
pabilities of our prototype, incorporating other decomposition and replay strate-



gies, and adapting the framework into a distributed implementation, where dif-
ferent replayer engines run on separate machines. In addition, we plan to pursue
additional real-life case studies to con�rm the validity of our approach.
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